摘要
Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy convertor and the power take-off system mechanically and electrically. However, focusing the wave power in specific wave field could also be an alternative to improve the wave energy extraction. In this experimental study, the Bragg resonance effect is applied to focus the wave energy. Because the Bragg resonance effect of the rippled bottom largely amplifies the wave reflection, leading to a significant increase of wave focusing. Achieved with an energy conversion system consisting of a point absorber and a permanent magnet single phase linear motor, the wave energy extracted in the wave flume with and without Bragg resonance effect was measured and compared quantitatively in experiment. It shows that energy extraction by a point absorber from a standing wave field resulted from Bragg resonance effect can be remarkably increased compared with that from a propagating wave field (without Bragg resonance effect).
Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy convertor and the power take-off system mechanically and electrically. However, focusing the wave power in specific wave field could also be an alternative to improve the wave energy extraction. In this experimental study, the Bragg resonance effect is applied to focus the wave energy. Because the Bragg resonance effect of the rippled bottom largely amplifies the wave reflection, leading to a significant increase of wave focusing. Achieved with an energy conversion system consisting of a point absorber and a permanent magnet single phase linear motor, the wave energy extracted in the wave flume with and without Bragg resonance effect was measured and compared quantitatively in experiment. It shows that energy extraction by a point absorber from a standing wave field resulted from Bragg resonance effect can be remarkably increased compared with that from a propagating wave field (without Bragg resonance effect).
基金
financially supported by the National Natural Science Fundation of China(Grant Nos.51579091,51379071,and 51137002)
the Qing Lan Project of Jiangsu Province,the Basic Research Fund from the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University(Grant Nos.20145027512 and 20145028412)
the Short-term Research Visits Project supported by Disaster Prevention Research Institute of Kyoto University(Grant No.27S-02)
the FundZamental Research Funds for the Central Universities of Hohai University(Grant No.2016B05214)