期刊文献+

NAO机器人自主目标跟踪算法研究 被引量:4

Research on Autonomous Target Tracking Algorithm for NAO Robot Computer Engineering and Applications
下载PDF
导出
摘要 针对目前应用最广的新型仿人形NAO机器人,如何应用于动态背景条件下并对运动目标进行自主检测跟踪,对此该文采用了一种基于三帧差分法和Camshift算法相结合的目标跟踪方法。首先通过SURF算法对相邻两帧图像背景进行匹配,变换到静态背景条件下,再通过三帧差分法检测运动目标;之后将目标运动信息融合到Camshift算法颜色概率分布直方图的计算中,实现目标自动识别跟踪并排除与目标颜色相似的背景干扰。试验表明,NAO机器人能够对运动目标进行自主跟踪。 According to a new type of humanoid NAO robot,how to apply it to the dynamic background conditions and track the moving target,a target tracking method based on the three-frame difference method and Camshift algorithm was proposed. Firstly,the SURF algorithm was used to transform the moving background to a static background,and then the moving target was detected by the three-frame difference method. Then,the target motion information was fused into the Camshift algorithm to calculate the color probability distribution histogram. It can automatically identify the moving target and eliminate the same color of background interference. Experiments show that the NAO robot can track moving targets autonomously.
出处 《自动化与仪表》 2017年第8期12-16,共5页 Automation & Instrumentation
关键词 NAO机器人 动态背景 SURF算法 CAMSHIFT算法 目标跟踪 NAO robot dynamic background speed-up robust features(SURF) algorithm Camshift algorithm target tracking
  • 相关文献

参考文献7

二级参考文献35

  • 1张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 2Wei Zhiqiang,Ji Xiaopeng,Wang Peng.Real-time moving object detection for video monitoring systems[J].Journal of Systems Engineering and Electronics,2006,17(4):731-736. 被引量:18
  • 3宋新,沈振康,王平,王鲁平.Mean shift在目标跟踪中的应用[J].系统工程与电子技术,2007,29(9):1405-1409. 被引量:30
  • 4Kalia R,Lee K D,Samir B V R,et al.An analysis of the effect of different image preprocessing techniques on the performance of SURF:Speeded up robust features[C]//17th Korea-Japan Joint Workshop on Frontiers of Computer Vision.IEEE,2011:1-6. 被引量:1
  • 5Luo Z,Chen S,Yong F U,et al.Research on video surveillance technology based on ONVIF standard[J].Journal of Chengdu University,2013,32(4):378-382. 被引量:1
  • 6W3school.WSDL文档结构[EB/OL].http://www.w3school.com.cn/wsdl/wsdl_documents.asp,2014. 被引量:1
  • 7Qu Y,Bollig E F,Erlebacher G.KWATT:A toolkit for automatic web service generation[J].Visual Geosciences,2008,13(1):59-69. 被引量:1
  • 8尚玉龙.基于meanshift和surf的车辆视频检测与跟踪[D].西安:西安电子科技大学,2012. 被引量:1
  • 9Bradski G R.Computer vision face tracking for use in a perceptual user interface[J].IEEE Trans Aerospace&Electronics Systems,1998:214-219. 被引量:1
  • 10Bay H,Ess A,Tuytelaars T,et al.Surf:Speeded up robust features.Computer vision and image understanding[J].Similarity Matching in Computer Vision and Multimedia,2008,110(3):404-417. 被引量:1

共引文献63

同被引文献55

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部