期刊文献+

基于TCensus的立体匹配算法及FPGA设计 被引量:3

Stereo matching algorithm and FPGA design based on TCensus
下载PDF
导出
摘要 随着无人机技术的迅速发展,利用无人机代替人工进行电力线巡线是行业内发展的新趋势。尽管无人机电力巡线相对于人工巡检效率更高,更加安全,但无人机巡检仍然面临一些问题,无人机的避障技术亟待完善,在巡检过程中无人机会出现与周边障碍物相撞的情况,尤其是细小的电线对无人机安全造成巨大的威胁。这些线状物往往目标不明显,雷达,超声波等技术得到的回波较少,造成避障困难。基于双目视觉系统的无人机避障技术在无人机避障领域得到了广泛的研究和关注。针对双目视觉实时无人机电力巡检避障应用,提出了基于TCensus(形态学Tophat变换和MiniCensus)变换的匹配代价测量方法来对原始图像中的弱目标进行增强,同时采用基于十字结构的支持区域来提高匹配的准确度。实验证明,本文设计的双目视觉系统可以有效检测无人机到电力线之间的距离,检测误差达到5%,提出的TCensus立体匹配算法与其它方法相比除了能够获得同样准确的背景深度图之外,还能对电线区域具有更精细的成像效果。 With the rapid development of UAV technology,the use of unmanned aerial vehicles instead of artificial power line inspection line is the industry development trend.Although UAV power patrols are more efficient and safer than manual inspection,UAV inspection continues to face problems such as aviation restrictions,airborne weight,flight life,obstacle avoidance technology and other factors.Unmanned aerial vehicle obstacle avoidance technology needs to be improved,in the inspection process,no chance will appear with the surrounding obstacles collision situation,and especially the small wires on the UAV caused a huge threat.These lines are often not obvious targets,radar,ultrasound and other technologies to get less echo,resulting in obstacle avoidance difficulties.The UAV obstacle avoidance technology based on binocular vision system has been widely studied and paid attention to in the field of unmanned aerial vehicles.This paper designs a real-time UAV power line detection system based on binocular vision system.In this paper,a matching cost measurement method based on TCensus(morphological Tophat transform and MiniCensus)is proposed to enhance the weak target in the original image,and the support region based on the cross structure is used to improve the matching accuracy.The experimental results show that the binocular vision system can effectively detect the distance between the UAV and the power line,and the detection error is 5%.The stereo matching algorithm proposed in this paper can obtain a better depth map,and the TCensus algorithm can effectively preserve the original image in the weak target line information.
出处 《国外电子测量技术》 2017年第7期71-76,94,共7页 Foreign Electronic Measurement Technology
关键词 立体匹配 无人机电力巡线 图像增强 Tophat变换 stereo matching UAV power line inspection image enhancement Tophat transformation
  • 相关文献

参考文献7

二级参考文献55

  • 1王大海,梁宏光,邱娜,徐世录.红外探测技术的应用与分析[J].红外与激光工程,2007,36(z2):107-112. 被引量:7
  • 2王向军,郭文佳,韩双来,彭明,魏旭宾.基于计算机视觉的弹着点坐标远程测量系统[J].红外与激光工程,2006,35(5):624-628. 被引量:8
  • 3王鑫.基于双目立体视觉的特征一致物体匹配与定位研究[D].天津:天津大学,2013. 被引量:2
  • 4MARR D. Vision: Computational investigation into the human representation and processing of visual information[M]. San Francisco: University of California Press, 1982 : 107-111. 被引量:1
  • 5SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [ J ]. International Journal of Computer Vision, 2002, 47(1-3) : 131-140. 被引量:1
  • 6WANG H Q, WU M, ZHANG Y B, et al. Effective stereo matching using reliable points based graph cut [ C ]. Visual Communications and Image Processing (VCIP) , 2013,8(1) : 1-6. 被引量:1
  • 7LI H, CHEN G. Segment-based stereo matching using graph cuts [ C ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004,1 : 1-74. 被引量:1
  • 8FELZENSZWALB P F, HUTTENLOCHER D P. Efficient belief propagation for early vision [ J ]. International Journal of Computer Vision, 2004, 1 ( 1 ) : 41-54. 被引量:1
  • 9BELHUMEUR P N,MUMFORD D. A Bayesian treatment of the stereo correspondence problem using half-occluded regions [ C ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alamitos, 1992:506-512. 被引量:1
  • 10KIMJ C, LEE K M, CHOI B T, et al. A dense stereo matching using two-pass dynamic programming with generalized ground control points [ C ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,2(2) : 1075- 1082. 被引量:1

共引文献67

同被引文献27

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部