期刊文献+

水下传感器网络时间同步和定位的联合实现方法 被引量:2

Joint Implement Approach for Time Synchronization and Localization in Underwater Sensor Networks
下载PDF
导出
摘要 水下传感器网络的信号传播速度受环境参数的影响而难以确定,增加了时间同步和定位的难度。当信号传播速度未知时,提出了一种水下传感器网络的时间同步和定位联合实现方案。通过建立该问题的优化函数和模型,设计了线性最小二乘(LLS)估计、最小二乘半定规划(LS-SDP)、平方最小二乘半定规划(SLS-SDP)及平方最小二乘二阶锥规划(SLS-SOCSDP)算法,分析了各算法的计算复杂度。仿真分析表明,线性代数LLS算法计算速度快,在低噪声条件下具有较高的估计精度。凸优化的LS-SDP、SLS-SDP及SLS-SOCSDP算法对未知参数估计的稳定性较好,但计算复杂度较高。 In underwater sensor networks, signal propagation speed is difficult to be determined due to the influence of environmental parameters, which increases the difficulty of time synchronization and localization. When the signal propagation speed is unknown, a joint implementation scheme for time synchronization and localization is put forward in underwater sensor networks. By building the optimization function and model of the problem, the linear least squares(LLS) estimation, least squares semidefinite programming(LS-SDP), squared least square semidefinite pro- gramming(SLS-SDP) and squared least square second order cone and semidefinite programming(SLS-SOCSDP) al- gorithms are designed, then the computational complexity of the proposed algorithms is analyzed. The simulation a- nalysis shows that the linear algebra LLS algorithm runs fast and obtains high positioning accuracy in low noise con- ditions. The stability of LS-SDP, SLS-SDP and SLS-SOCSDP algorithm with convex optimization is better, but the computation complexity is higher.
作者 严长虹 马静
出处 《传感技术学报》 CAS CSCD 北大核心 2017年第6期922-928,共7页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(71373123) 江苏高校哲学社会科学研究重点项目(2015ZDIXM007) 南京航空航天大学基本科研业务费重大项目(NP201630X)
关键词 水下传感器网络 定位 时间同步 到达时间 underwater sensor networks localization time synchronization time of arrival
  • 相关文献

参考文献2

二级参考文献28

  • 1王珊珊,殷建平,蔡志平,张国敏.基于RSSI的无线传感器网络节点自身定位算法[J].计算机研究与发展,2008,45(z1):385-388. 被引量:30
  • 2王晓乐,徐家品.基于粒子群优化算法的WSNs节点定位研究[J].计算机应用,2009,29(2):494-495. 被引量:19
  • 3王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:673
  • 4Langendoen K, Reijers N. Distributed localization in wireless sensor networks: A quantitive comparison [J]. Computer Networks, 2003, 42(4): 499-518. 被引量:1
  • 5Niculescu D, Nath B. Position and orientation in ad hoe networks[J].Hoe Networks, 2004, 2(1): 133-151. 被引量:1
  • 6Kennedy J, Eberhart R. Particle swarm optimization [C] // Proc of IEEE Int Conf on Neural Networks. Piscataway, NJ : IEEE, 1995:1942-1948. 被引量:1
  • 7Kulkarni R V, Venayagamoorthy G K. Particle swarm optimization in wireless-sensor networks: A brief survey [J]. IEEE Trans on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2010, 40(5) : 1-7. 被引量:1
  • 8Gopakumar A, Jacob L. Localization in wireless sensor networks using particle swarm optimization [C] //Proc of IET Int Conf Wireless, Mobile Multimedia Networks. l.ondon: Institution of Engineering and Technology, 2008: 227-230. 被引量:1
  • 9Kulkarni R V, Venayagamoorthy G K, Cheng M X. Bio- inspired node localization in wireless sensor networks [C] // Proe of IEEE lnt Conf Syst, Man Cybern. Piscataway, NJ: IEEE, 2009:205-210. 被引量:1
  • 10Low K S, Nguyen H A, Guo H. A particle swarm optimization approach for the localization of a wireless sensor network [C] //Proc of IEEE Int Symp. Piscataway, NJ: IEEE, 2008:1820-1825. 被引量:1

共引文献23

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部