期刊文献+

节能刮板沉降箱式除尘可修复系统指数稳定性

Exponential Stability Analysis of Energy Saving Dust Removing Reparable System of Scraper Settling Chamber
下载PDF
导出
摘要 研究节能刮板沉降箱式除尘可修复系统,运用泛函分析的方法,特别是Banach空间上的线性算子半群理论,证明了严格占优本征值的存在性,并通过分析本质谱界经过扰动后的变化,进一步表明在一定的条件下,系统的动态解以指数形式收敛于系统的稳态解.并研究了该系统算子预解式的特性.对任意给定的δ>0,γ=a+bi,-μ+δ<a_1≤a≤a_2,得到lim∣b∣→∞‖R(γ;A+B)‖=0.进而得到在Rγ≥a_1的右半平面内相应于系统算子A+B的谱点由有限个本征值组成. The energy saving dust removing reparable system of scraper settling chamber is studied in the paper. By the method of strong continuous semi-group, the paper analyzed the essential spectrum of the system operator before and after perturbation. The results show that the dynamic solution of the system is exponential stability and tends to the steady solution of the system. The property of operator's resolvent is discussed. We randomly give δ〉0, and γ=a+bi. Let's fix a1 and a2, which is satisfying to -μ+δ〈a1≤ a≤ a2, so, we get a conclusion is R(γ; A+B)/parallel=0. Consequently, we obtain that in the right place of Rγ≥ a1 is composed of the finite isolating eigenvalue corresponding spectrum of operator A+B system.
出处 《应用泛函分析学报》 2017年第2期141-150,共10页 Acta Analysis Functionalis Applicata
关键词 严格占优本征值 本质谱界 扰动 指数稳定性 预解式 strictly dominant eigenvalue essential spectrum disturbance exponen-tial stability eigenvalue
  • 相关文献

参考文献8

二级参考文献24

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部