期刊文献+

复合二项对偶模型中的周期性分红问题 被引量:1

Optimal Dividend Strategy in Compound Binomial Dual Model with Bounded Dividend Rates and Periodic Dividend Payments
下载PDF
导出
摘要 该文主要在有界红利率的条件下讨论复合二项对偶模型的周期性分红问题.通过对值函数进行变换,得到了最优红利策略的一些性质,并且证明了最优值函数是一个HJB方程的唯一解.从而得到了最优策略和最优值函数的一个简单计算方法.根据最优红利策略的一些性质,该文还得到了最优值函数的可无限逼近的上界和下界.最后提供一些数值计算实例来说明该算法. In this paper, we discusses the problem binomial dual model with bounded dividend rates of optimal dividend payment in compound and periodic dividend payments. Through transforming the value function, we obtain some properties of the optimal dividend payment strategy, and show that the optimal value function is the unique solution of a discrete Hamilton- aacobi-Bellman equation. Meanwhile, a simple algorithm is obtained for the optimal strategy and the optimal value function. According to the properties of the optimal dividend strategy, an upper bound and a lower bound of the optimal value function are derived. Numerical examples are presented to illustrate the transformation method.
作者 游凌云 谭激扬 黎自强 张汉君 you Lingyun Tan Jiyang Li Ziqiang Zhang Hanjun(School of Mathematics and Computational Science, Xiangtan University, Hunan Xiangtan 411105 School of Information Engineering, Xiangtan University, Hunan Xiangtan 411105)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2017年第4期751-766,共16页 Acta Mathematica Scientia
基金 国家自然科学基金(61272294 11371301) 湖南省自然科学基金(14JJ2069)~~
关键词 对偶模型 周期性分红 HJB方程 压缩映射 最优分红策略 Dual model Periodic dividend payments HJB equation Contraction mapping Optimal dividend strategy.
  • 相关文献

参考文献6

二级参考文献51

  • 1Ming Zhou,Li Wei,Jun-yi Guo.Some Results behind Dividend Problems[J].Acta Mathematicae Applicatae Sinica,2006,22(4):681-686. 被引量:1
  • 2Bai L H, Guo J Y. Optimal proportional reinsurance and investment with multiple risky assets and no- shorting constraint. Insurance: Mathematics and Economics 2008, 42:968-975. 被引量:1
  • 3Cvitanid J, Karatzas I. Convex duality in constrained portfolio optimization. Annals of Applied Probability, 1992, 2(4): 767-818. 被引量:1
  • 4De Finetti B. Su un'impostazione alternativu dell teoria colletiva del rischio. Transactions of the XV International Congress of Actuaries, 1957, 2:433-443. 被引量:1
  • 5Fleming W H, Soner H M. Controlled Markov Process and Viscosity Solutions. New York: Springer-Verlag, 1993. 被引量:1
  • 6Gerber H U, Shiu E S W. Optimal dividends: Analysis with Brownian motion. North American Actuarial Journal, 2004, 8(1): 1-20. 被引量:1
  • 7Grossman S J, Vila J-L, Optimal dynamic trading with leverge constraint. Journal of Financial and Quantitative Analysis, 1992, 27(2): 151 -168. 被引量:1
  • 8Hcjgaard B, Taksar M. Controlling risk eaposure and dividends payout schemes: insurance company example. Mathematical Finance, 1999, 2:153-182. 被引量:1
  • 9Hojgaard B, Taksar M. Optimal risk control for a large corporation in the presence of returns on investments. Finance Stochast, 2001, 5:527-547. 被引量:1
  • 10Hojgaard B, Taksar M. Optimal dynamic portfolio secetion for a corporation with controllable risk and dividend distribution policy. Quantitative Finance, 2004, 4:315-327. 被引量:1

共引文献15

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部