摘要
We consider the partial regularity for weak solutions to superquadratic elliptic systems with controllable growth condition, under the assumption of Dini continuous coefficients. The proof relies upon an iteration scheme of a decay estimate for a new type of excess functional. To establish the decay estimate, we use the technique of A-harmonic approximation and obtain a general criterion for a weak solution to be regular in the neighborhood of a given point. In particular, the proof yields directly the optimal H¨older exponent for the derivative of the weak solutions on the regular set.
We consider the partial regularity for weak solutions to superquadratic elliptic systems with controllable growth condition, under the assumption of Dini continuous coefficients. The proof relies upon an iteration scheme of a decay estimate for a new type of excess functional. To establish the decay estimate, we use the technique of A-harmonic approximation and obtain a general criterion for a weak solution to be regular in the neighborhood of a given point. In particular, the proof yields directly the optimal H¨older exponent for the derivative of the weak solutions on the regular set.
基金
Supported by the National Natural Science Foundation of China(No.10976026)
Natural Science Foundation of Fujian Province(2012D102)