期刊文献+

线性时变模型预测控制器提高农业车辆导航路径自动跟踪精度 被引量:23

Linear time-varying model predictive controller improving precision of navigation path automatic tracking for agricultural vehicle
下载PDF
导出
摘要 为提高农业车辆导航路径自动跟踪精度,提出一种基于线性时变模型预测控制的路径跟踪方法。该方法将农业车辆非线性运动学模型线性化和离散化处理,作为控制器预测方程;建立以系统控制增量为状态量的目标函数,为防止无可行解,引入松弛因子;设计系统控制量、控制增量和状态量约束条件,并将目标函数求解转为带约束的二次规划问题;采用内点法进行求解,将求得的控制输入增量第一个元素作用于系统;重复以上过程,实现优化控制。基于Matlab/Simulink平台进行了模型预测控制器设计,并分别进行了导航坐标系下的直线和圆形路径跟踪试验。结果表明,所设计的控制器能够实现直线路径的完全跟踪(误差始终为0);跟踪圆形路径时,1 m/s时的横向平均跟踪误差为7.5 cm,3 m/s时的横向平均跟踪误差为10 cm;整个跟踪过程,前轮转角始终被限定在约束范围内。不同控制器参数下的仿真结果表明,增大预测时域和控制周期能够减小跟踪误差和前轮转角变化幅度,控制时域的变化对控制器路径跟踪响应速度影响较小。同时基于设计的模型预测控制器进行了场地试验。结果表明,试验小车以1m/s的速度跟踪直线路径时,横向最大误差均值为1.622 cm,横向平均误差均值为0.865 cm;跟踪圆形路径时,当行走速度低于1 m/s时,横向最大误差小于10 cm。 Automatic driving for agricultural vehicle has become a research hotspot. Automatic driving technology includes vehicle position technology and automatic steering technology. Vehicle position technology usually uses the global positioning system (GPS) to realize. Automatic steering technology is realized by controlling vehicle lateral motion which can keep vehicle driving in a desired trajectory. So the result of automatic steering control directly embodies the intelligent behavior of agricultural vehicle. Recently more and more papers have proposed all kinds of algorithms to realize agricultural vehicle automatic driving. All of them show that in straight path tracking experiments, when the velocity is 1 m/s, the maximum error is 5 cm; in circular path tracking experiments, when the velocity is 1 m/s, the maximum error is 10 cm. With the increase of velocity, the tracking error is bound to further increase. To improve the precision, iterative learning control has been applied to path tracking. This method can achieve an almost perfect tracking performance in theory. But iterative learning control is an open-loop control which cannot effectively deal with interference. Model predictive control is a new control method which has attracted more and more researchers to study. The method can resolve the problem with constraints using the rolling optimization technique. It can not only predict the next-time system state, but also minimize tracking errors. With the rolling optimization technique and feedback adjustment, it can also overcome some uncertainty interferences. So to improve the precision of navigation control system for agricultural vehicle, an intelligent method of path tracking based on linear time-varying model predictive control is proposed. Although agricultural vehicle model usually has high nonlinearity, the method selects the linear timing-varying error model of the dynamic model as the prediction model of model predictive control to improve operation velocity. Objective function that selects con
作者 张万枝 白文静 吕钊钦 刘正铎 黄琛 Zhang Wanzhi Bai Wenjing Lu Zhaoqin Liu Zhengduo Huang Chen(College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian 271018, China Shandong Provincial Key Laboratory of Horticultural Machinery and Equipment, Taian 271018, China College of lnformation Science and Engineering, Shandong Agricultural University, Taian 271018, China)
出处 《农业工程学报》 EI CAS CSCD 北大核心 2017年第13期104-111,共8页 Transactions of the Chinese Society of Agricultural Engineering
基金 山东省现代农业技术体系创新团队岗位专家资助项目(SDAIT-10-022-10) 山东农业大学博士后经费(76567) 山东农业大学青年科技创新基金(24158)
关键词 车辆 控制 机械化 导航路径 跟踪 vehicles control mechanization navigation path tracking
  • 相关文献

参考文献21

二级参考文献237

共引文献862

同被引文献362

引证文献23

二级引证文献251

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部