期刊文献+

基于BP神经网络的冲击波压力传感器组件动态特性分段建模方法研究 被引量:3

A segment modeling method for the dynamic characteristics of shock wave pressure sensor assembly based on BP neural network
下载PDF
导出
摘要 受爆炸场中寄生效应的影响,需要采取相应抑制措施对冲击波压力传感器进行改造。为研究冲击波压力传感器组件的动态特性,基于双膜激波管对冲击波压力传感器组件进行动态校准,获得了阶跃响应信号;采用微分法求取了传感器组件动态特性非参数模型;根据冲击波压力传感器组件动态特性非参数模型变化规律,在频域内对其进行合理分段,并基于BP神经网络分段建模方法得到传感器组件动态特性模型;通过实例分析与比较,证明了基于BP神经网络的分段建模方法能够有效提高模型精度和建模效率。 Affected by the parasitic effect in explosion fields, appropriate measures need to be taken to reform theshock wave pressure sensors. To research the dynamic characteristics of shock wave pressure sensor assembly, based on double - diaphragm shock tube, the pressure sensor assembly of the shock wave can be calibrated and give a step response signal. Then the dynamic characteristics of the sensor assembly,s nonparametric model can be obtained by differential methods. According to the non-parametric model ’ s variation of the shock wave pressure sensor assembly,s dynamic characteristics,the dynamic characteristics should be reasonably segmented in frequency domain, and each part of the dynamic characteristics can be modeled based on BP neural network. Through analysis and comparison of an example, it can be proved that the segment modeling method based on BP neural network can effectively improve the accuracy and efficiency of modeling.
出处 《振动与冲击》 EI CSCD 北大核心 2017年第16期155-158,共4页 Journal of Vibration and Shock
基金 国家计量课题基础技术项目(J092013B003) 国家自然科学基金(11372143)
关键词 冲击波压力 传感器组件 动态特性 BP神经网络 分段建模 shock wave pressure sensor assembly dynamic characteristic back propagation(BP) neural network segment modeling
  • 相关文献

参考文献8

二级参考文献30

  • 1楼顺天 施阳.基于MATLAB的系统分析与设计-神经网络[M].西安电子科技大学出版社,1999.. 被引量:45
  • 2Layer E,Gawedzki W.Theoretical principles for dynamic errors measurement[J].Measurement,1990,8(1):178-182. 被引量:1
  • 3于渤 杨孝仁 刘智敏.国际通用计量学基本名词[M],(第二版)[M].北京:中国计量出版社,1996.. 被引量:1
  • 4张志杰.[D].北京:北京理工大学,1998. 被引量:1
  • 5BA格拉诺夫斯基 傅烈堂 鲍建忠译.动态测量[M].北京:中国计量出版社,1989.. 被引量:1
  • 6JJG 624-89压力传感器动态校准,中国计量出版社,1990.3. 被引量:1
  • 7QJ1154-87.标定压力传感器用的激波管装置技术条件.[S].,1987,12.. 被引量:1
  • 8Rumelhart D E, Hinton G E, Williams R J. Learninginternal repr esentatio ns by error propagation[A].Rumelhart D E James L.McClelland J L. Parallel di stributed processing: explorations in the microstructure of cognition[C], vol ume 1, Cambridge, MA:MIT Press, 1986.318~362. 被引量:1
  • 9Neural Network Toolbox User's Guide .The Mathworks,inc. 1999. 被引量:1
  • 10Fahlman S E. Faster-learning variations on back-propagation: an e mpirical study[A].Touretzky D,Hinton G,Sejnowski T. Proceedings of the 1988 C onnectionist Models Summer School[C].Carnegic Mellon University,1988,38~51. 被引量:1

共引文献199

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部