期刊文献+

文档分类中的多特征最大值法及其改进方法

Maximum multiple-feature method and its improved method for document classification
下载PDF
导出
摘要 为在每个文档类别中选择更多的特征,解决至少一个特征法(ALOF)的特征不足问题,提出文档特征最大值法(MFT)和改进的文档特征最大值法(IMFT)。按照数据处理方式决定选择特征的数量,MFT法解析所有文档,确保训练集中每个文档都用最终特征矢量来表示,IMFT法只分析特征评估函数中特征值高的文档以选择较少的特征,减少选择不相关特征的概率。实验考虑3个文档分类数据库和3个评估函数,实验结果表明,与ALOF法和模糊关联聚类(FRC)法相比,提出的两种方法的F1测度更高,分类效果更好,评估函数对最终的分类结果具有重要影响,不同的特征数会左右最终结果。 To select more features in document classification to work on less-feature problem of at least one feature (ALOF) method, maximum feature-f text (MFT) and improved maximum feature-f text (IMFT) were proposed. The number of selected features was determined in accordance with the data processing. All documents were analyzed in MFT method to ensure that each document in the training set was represented in the final feature vectors. Whereas IMFT analyzed only the documents with high FEF valued features to select less features, and it therefore reduced the probability of selection of irrelevant features. Three data- bases of document classification and three evaluation functions were considered in the experiment. Compared with the ALOF method and method of fuzzy correlation clustering (FRC), F1 measurements of the two proposed methods are much higher, and the classification effect is better. Experimental results also show that, the evaluation function has an important influence on the final classification results, and the number of features also affects the final results.
作者 龚静 黄欣阳 GONG Jing HUANG Xin-yang(Department of Information Technology, Hunan Polytechnic of Environment and Bilology, Hengyang 421001,China College of Computer Science and Technology, University of South China, Hengyang 421001, China)
出处 《计算机工程与设计》 北大核心 2017年第8期2262-2268,共7页 Computer Engineering and Design
基金 湖南省教育厅基金项目(12C1056)
关键词 文档分类 评估函数 特征最大值 F1测度 特征数 document classification evaluation function maximum feature-f F1 measurement number of features
  • 相关文献

参考文献9

二级参考文献73

  • 1徐燕,李锦涛,王斌,孙春明,张森.不均衡数据集上文本分类的特征选择研究[J].计算机研究与发展,2007,44(z2):58-62. 被引量:20
  • 2申红,吕宝粮,内山将夫,井佐原均.文本分类的特征提取方法比较与改进[J].计算机仿真,2006,23(3):222-224. 被引量:28
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 4车万翔,刘挺,秦兵,等.面向双语句对检索的汉语句子相似度计算[C]//全国第七届计算语言学联合学术会议论文集.北京:清华大学出版社,2003:81-88. 被引量:6
  • 5COELHO T A S, CALADO P P, SOUZA L V, et al. Image retrieval using multiple evidence ranking [ J]. IEEE Trans on Knowledge and Data Engineering, 2004,16 ( 4 ) :408-417. 被引量:1
  • 6KO Y, PARK J, SEO J. Improving text categorization using the im- portance of sentences [ J ]. Information Processing and Manage- ment,2004,40(1) :65-79. 被引量:1
  • 7THEOBALD M, SIDDHARTH J. SpotSigs: robust and efficient near duplicate detection in large Web collection [ C ]//Proc of the 31 st An- nual International,ACM SIGIR Conference on Research and Develop- ment in Information Retrieval. New York:ACM Press,2008:563-570. 被引量:1
  • 8PATWARDHAN S, BANERJEE S, PEDERSEN T. Using measures of semantic relatedness for word sense disambiguation [ C ]//Proc of the 4th International Conference on Intelligent Text Processing and Com- putational Linguistics. 2003:301-308. 被引量:1
  • 9MILLER G. WordNet: a lexical database for English[ J]. Communi- cations of the ACM,1995,38( 11 ) :39-41. 被引量:1
  • 10SALTON G. The SMART retrieval system-experiments in automatic document processing [ M ]. Upper Saddle River: Prentice-Hall, 1971 : 207-214. 被引量:1

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部