期刊文献+

基于Hopfield神经网络的云存储负载均衡策略 被引量:3

Load balancing strategy of cloud storage based on Hopfield neural network
下载PDF
导出
摘要 针对当前Hadoop存储效率不高,且副本故障后恢复成本较高的问题,提出一种基于Hopfield神经网络(HNN)的存储策略。为了实现系统整体性能的提升,首先分析影响存储效率的资源特征;然后建立资源约束模型,设计Hopfield能量函数,并化简该能量函数;最后,通过标准用例Wordcount测试,分析8个节点的平均利用率,并与三个常用算法包括基于资源的动态调用算法、基于能耗的算法和Hadoop默认存储策略进行性能和资源利用方面的比较。实验表明,与对比算法相比,基于HNN的存储策略在效率上分别平均提升15.63%、32.92%和55.92%。因此,该方法在应用中可以更好地实现资源负载平衡,将有助于改善Hadoop的存储能力,并可以加快检索。 Focusing on the shortcoming of low storage efficiency and high recovery cost after copy failure of the current Hadoop, Hopfield Neural Network( HNN) was used to improve the overall performance. Firstly, the resource characteristics that affect the storage efficiency were analyzed. Secondly, the resource constraint model was established, the Hopfield energy function was designed and simplified. Finally, the average utilization rate of 8 nodes was analyzed by using the standard test case Wordcount, and the performance and resource utilization of the proposed strategy were compared with three typical algorithms including dynamic resource allocation algorithm, energy-efficient algorithm and Hadoop default storage strategy, and the comparison results showed that the average efficiency of the storage strategy based on HNN was promoted by 15. 63%,32. 92% and 55. 92% respectively. The results indicate that the proposed algorithm can realize the resource load balancing,help to improve the storage capacity of Hadoop, and speed up the retrieval.
作者 李强 刘晓峰
出处 《计算机应用》 CSCD 北大核心 2017年第8期2214-2217,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61502330) 山西省高等学校科技创新项目(20161131) 山西省软科学计划研究项目(2016041008-5)~~
关键词 云存储 HADOOP HADOOP分布式文件系统 副本策略 负载均衡 cloud storage Hadoop Hadoop Distributed File System(HDFS) replica strategy load balancing
  • 相关文献

参考文献6

二级参考文献50

  • 1张长水,阎平凡.解Job-shop调度问题的神经网络方法[J].自动化学报,1995,21(6):706-712. 被引量:38
  • 2[1]Zhang C S , Yan P F, Chang T. Solving Job-Shop Scheduling Problem with Priority Using Neural Network[J]. IEEE Int. Conf. Neural Networks, 1991: 1361-1366. 被引量:1
  • 3[2]Chang C Y, Jeng M D. Experimental Study of a Neural Model for Scheduling Job Shops[J]. IEEE Int. Conf. System, Man, Cybernetics, 1995, 1: 536-540. 被引量:1
  • 4[3]Yang S X, Wang D W: Constraint Satisfaction Adaptive Neural Network and Heuristic Combined Approaches for Generalized Job-Shop Scheduling[J]. IEEE Trans. on Neural Network, 2000, 11: 474-486. 被引量:1
  • 5[4]Huang Y M, Chen R M. Scheduling Multiprocessor Job with Resource and Timing Constraints Using Neural Networks[J]. IEEE Trans. on Syst., Man, Cybernetic, 1999, 29, 490-502. 被引量:1
  • 6[5]Hopfield J J, Tank D W. Neural Computation of Decision in Optimization Problems[J]. Biol. Cybern., 1985, 52: 141-152. 被引量:1
  • 7Storage Networking Industry Association (SNIA).Cloud storage reference model:Version 0.3 rev[S/OL].[2011-07-18].http://www.snia.org/sites/default/files/CloudStorageReferenceModelV03.pdf. 被引量:1
  • 8Amazon.com Inc.Amazon simple storage service (Amazon S3)[EB/OL].[2011-07-18].http://aws.amazon.com/s3. 被引量:1
  • 9BORTHAKU D.The Hadoop distributed file system:Architecture and design[EB/OL].[2011-07-05].http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf. 被引量:1
  • 10Hbase Development Team.HBase:Bigtable-like structured storage for Hadoop HDFS[EB/OL].[2011-06-12].http://wiki.apache.org/hadoop/Hbase. 被引量:1

共引文献98

同被引文献23

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部