期刊文献+

基于拟线性积分方程法的三维电磁场数值模拟精度分析 被引量:1

Precision Analysis of 3D Electromagnetic Field Numerical Modeling Based on Quasi-Linear Integral Equation Method
下载PDF
导出
摘要 应用于大规模三维数据反演的拟线性近似方法的计算精度和应用范围至今仍是一个比较模糊的概念。本文首先实现了基于拟线性近似方法(对角拟线性近似、标量拟线性近似、拟解析近似和局部拟线性近似)的三维电磁场数值模拟,然后通过正演计算,对这些方法的计算精度进行了系统的对比研究。理论研究结果表明:对角拟线性近似方法精度最高,适用范围最广,对电性变化在3~4个数量级内的地电模型都能给出精确的计算结果;拟解析近似方法计算精度只低于对角拟线性近似方法,它适用于异常电导率与背景电导率比值为2~3个数量级的地电模型;标量拟线性近似方法和局部拟线性近似方法的精度较低,只适用于异常电导率与背景电导率比值小于2个数量级的情况。 The accuracy and the application scope of quasi-linear approximation methods,including scalar quasi-linear approximation,diagonal quasi-linear approximation,quasi-analytic approximation and localized quasi-linear approximation,are still a relatively misty concept in large-scale three-dimensional data inversion.In the paper,we implemented three-dimensional numerical simulation based on theseapproximation methods.By forward modeling,we systematically compared the accuracy of simulation results,and constrained the range of applications of these methods.Theoretical results show that:The diagonal quasi-linear approximation method has the highest accuracy and the widest range of applications among these methods and can give accurate results when electrical resistivity changes within 3-4 orders of magnitude;The accuracy of the quasi-analytical approximation method is a bit lower than that of the diagonal quasi-linear approximation method,and is suitable for calculating the geoelectrical model whose conductivity contrast between abnormal and background is roughly a few times to a hundred times;The accuracy of scalar quasi-linear approximation method and localized quasi-linear approximation method is the lowest,and they are only able to be used to calculate the geoelectric model of anomalous conductivity and background conductivity ratio of roughly tens of times.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2017年第4期1268-1277,共10页 Journal of Jilin University:Earth Science Edition
基金 国家深部探测技术与实验研究专项(SinoProbe-03-05) 国家重大科学仪器设备开发专项(2011YQ05006009)~~
关键词 拟线性近似 拟解析近似 局部拟线性近似 精度对比 quasi-linear approximation quasi-analytic approximation localized quasi-linear approximation accuracy comparison
  • 相关文献

参考文献2

二级参考文献121

  • 1孙建国.声波散射数值模拟的两种新方案[J].吉林大学学报(地球科学版),2006,36(5):863-868. 被引量:14
  • 2吴望一.流体力学(上册)[M].北京:北京大学出版社,1989.. 被引量:2
  • 3张奠宙 王善平.陈省身文集[M].上海:华东师范大学出版社,2002.130、127、72. 被引量:2
  • 4拜仑F W, 富勒R W. 物理学中的数学方法(第一卷)[M]. 北京: 科学出版社, 1984. 被引量:1
  • 5Gibbs J W. Element of vector analysis[A]. In The Scientific Papers of J Willard Gibbs[C], New York: Dover, 1961. 被引量:1
  • 6Born M, Wolf E. Principles of Optics[M]. 6th ed. New York: Pergamon Press, 1980. 被引量:1
  • 7Bowman J J, Senior T B A, Uslenghi P L E. Electro- magnetic and Acoustic Scattering by Simple Shapes [M]. Amsterdam: North-Holland, 1969. 被引量:1
  • 8Felsen L B, Marcuvitz. Radiation and Scattering of Waves[M]. Englewood Cliffs: Prentice-Hall, 1973. 被引量:1
  • 9Hecht E. Optics. Beijing[M]. [S. l. ]: Higher Educa tion Press, 2005. 被引量:1
  • 10Ishimaru A. Electromagnetic Waves Propagation, Ra- diation, and Scattering[M]. Englewood Cliffs: Pren- tice-Hall, 1991. 被引量:1

共引文献9

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部