期刊文献+

基于ZIFs合成的中空双金属(Zn,Co)S纳米晶及其赝电容性质研究 被引量:2

Facile Synthesis of ZIFs-derived Hollow Bimetal(Zn,Co) S Nanocrystals for Supercapacitors
下载PDF
导出
摘要 通过两步法设计合成了具有中空结构的双金属硫化物(Zn,Co)S纳米晶,并研究了其电化学性质.首先在室温下,以水为溶剂,十六烷基三甲基溴化铵为表面活性剂,利用Zn^(2+),Co^(2+)与2-甲基咪唑的配位作用形成了ZIF-Zn,Co.然后以ZIF-Zn,Co为自牺牲模板剂,加入硫代乙酰胺,在微波辐射下快速合成了具有中空结构的(Zn,Co)S纳米晶.电化学测试结果表明,在电流密度为3 mA/cm^2时,(Zn,Co)S纳米晶比电容为423.3 F/g,在电流密度为10 mA/cm^2时,充放电2000次,仍能保持59%的初始电容.所制备的中空纳米结构具有较高的比表面积和较好的电化学性能,可作为超级电容器的电极材料. A simple two-step method was introduced to synthesize uniform and hollow (Zn, Co)S nanostructures. Firstly, the bimetal compound ZIF-Zn, Co(ZIF = zeolitic imidazolate frameworks) with metal ions( gn^2+ and Co^2+) and ligand(2-methylimidazole) was obtained using deionized water as solvent, hexadeeyhrimethyl- ammonium bromide (CTAB) as capping agent under stirring at room temperature. Secondy, hollow (Zn, Co)S nanostructures were synthesized by selecting ZIF-Zn, Co as self-saerificial template and adding thioacetamide (TAA) as sulfate source under the mierowave-assisted heating condition. The electrochemical measurements show that the speeific capaeitanee of the as-made hollow (Zn, Co)S nanostructures was 423.3 F/g at current density of 3 mA/cm^2 and 57% capacitanee remains after 2000 cycles at a current density of 10 mA/cm^2. With the advantages of unique properties, such as high surface area and good eleetrochemical performance, the as-made hollow (Zn, Co)S nanostruetures have great potential as eleetrode material for supereapaeitors.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2017年第8期1303-1308,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21371069)资助~~
关键词 沸石咪唑酯骨架材料 双金属 空心纳米结构 硫化物 超级电容器 Zeolitic imidazolate frameworks(ZIFs) Bimetal Hollow nanostructure Sulfide Supercapaeitor
  • 相关文献

参考文献5

二级参考文献110

  • 1Wang H. N., Varghese J. L., Pilon L., Electrochemi. Acta, 2011, 56(17), 6189. 被引量:1
  • 2Wang Y. S., Wang C. Y., Guo C.Y., Shi Z. Q., J. Phys. Chem. Solids, 2008, 69(1), 16. 被引量:1
  • 3Liu Y. F., Hu Z. H., Xu K., Zheng X. W., Gao Q., Acta Phys-Chim. Sin., 2008, 24(7), 1143. 被引量:1
  • 4Daud W. M. A. W., Ali W. S. W., Bioresource Technol., 2004, 93, 63. 被引量:1
  • 5Frackowiak E., Béguin F., Carbon, 2001, 39(6), 937. 被引量:1
  • 6Qu D. Y., J. Power Sources, 2002, 109(2), 403. 被引量:1
  • 7Xia Y. D., Yang Z. X., Mokaya R., Nanoscale, 2010, 2, 639. 被引量:1
  • 8Kyotani T., Nagai T., Inoue S., Tomita A., Chem. Mater., 1997, 9, 609. 被引量:1
  • 9Xiao Q. F., Zhou X., Electrochemi. Acta, 2003, 48(15), 575. 被引量:1
  • 10Stoller M. D., Park S., Zhu Y., An J., Ruoff R. S., Nano Lett., 2008, 8(10), 3498. 被引量:1

共引文献42

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部