期刊文献+

基于小波包和模糊自适应共振神经网络的变压器绕组状态识别 被引量:11

State Recognition for Transformer Winding Based on Wavelet Packet and Fuzzy Adaptive Resonance Theory Neural Network
下载PDF
导出
摘要 变压器振动信号中包含了大量状态信息,但难以从中提取有效特征进行绕组松动状态识别。为此,提出了基于模糊自适应共振理论(fuzzy adaptive resonance theory,Fuzzy-ART)的变压器绕组松动状态识别方法。首先,设置9种绕组松动状态并进行短路实验,测取油箱表面振动信号;然后对振动信号进行4层小波包变换,提取有效测点状态特征频带的小波包能量构成特征向量;最后将特征向量作为Fuzzy-ART神经网络的输入,对不同绕组松动状态进行识别。实验结果表明,基于小波包的Fuzzy-ART神经网络能对绕组松动状态进行快速、稳定分类,可用于变压器绕组松动状态的在线监测与诊断。 Though there are great deal of state information in transformer vibration signals, it is hard to extract effective fea-tures to recognize winding looseness state of the transformer. Therefore, this paper presents a state recognition method for transformer winding looseness based on fuzzy adaptive resonance theory (Fuzzy-ART) neural network. Firstly, it sets nine kinds of winding looseness states for short-circuit test and measuring vibration signal on the surface of oil ^ plies four layers wavelet packet transform for vibration signal and extracts wavelet packet energy of state feature bands of ef-fective measuring points to form feature vectors. Finally, it takes feature vectors as input of Fuzzy-ART neural network for recognizing different winding looseness states. Test results indicate that the Fuzzy-ART neural network based on wavelet packet can rapidly and stably classify winding looseness state which is available for online monitoring and diagnosis on trans-former winding looseness state.
出处 《广东电力》 2017年第7期89-95,共7页 Guangdong Electric Power
基金 国网江苏省电力公司重点科技项目(J2014055)
关键词 变压器 绕组松动 振动信号 小波包能量 Fuzzy-ART神经网络 状态识别 transformer winding looseness vibration signal wavelet packet energy fuzzy adaptive resonance theory neural network state recognition
  • 相关文献

参考文献15

二级参考文献126

共引文献310

同被引文献139

引证文献11

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部