期刊文献+

Trivalent Yb/Ho/Ce tri-doped core/shell NaYF4 nanoparticles for tunable upconversion luminescence from green to red 被引量:3

Trivalent Yb/Ho/Ce tri-doped core/shell NaYF_4 nanoparticles for tunable upconversion luminescence from green to red
原文传递
导出
摘要 Three types of β-NaYF_4nanoparticles, uncoated core(NaYF_4:Yb/Ho/Ce), single-layer coated core@shell(NaYF_4:Yb/Ho/Ce@NaYF_4:Yb) and double-layer coated core@shell@shell(NaYF_4:Yb/Ho@NaYF_4:Yb@NaYF_4:Yb) with Ce^(3+) doped in core, first and second shell, respectively, were synthesized through solvothermal method to investigate the cross-relaxation between Ho^(3+) and Ce^(3+) for the tunable upconversion luminescence. By doping Ce^(3+) into different layers with different doping concentrations, a systematical investigation on the tunable upconversion luminescence from green to red was conducted. The results showed that a remarkable color tuning could be achieved from green to red when increasing the doping concentration of Ce^(3+) in the same layer of Ho^(3+). And if Ce^(3+) and Ho^(3+) were separated in different layers, the color tuning would be depressed significantly due to the reduced cross-relaxation between Ho^(3+) and Ce^(3+). Moreover, the UC emission intensity of core@shell and core@shell@shell was enhanced significantly compared with that of unmodified core nanoparticles. Three types of β-NaYF_4nanoparticles, uncoated core(NaYF_4:Yb/Ho/Ce), single-layer coated core@shell(NaYF_4:Yb/Ho/Ce@NaYF_4:Yb) and double-layer coated core@shell@shell(NaYF_4:Yb/Ho@NaYF_4:Yb@NaYF_4:Yb) with Ce^(3+) doped in core, first and second shell, respectively, were synthesized through solvothermal method to investigate the cross-relaxation between Ho^(3+) and Ce^(3+) for the tunable upconversion luminescence. By doping Ce^(3+) into different layers with different doping concentrations, a systematical investigation on the tunable upconversion luminescence from green to red was conducted. The results showed that a remarkable color tuning could be achieved from green to red when increasing the doping concentration of Ce^(3+) in the same layer of Ho^(3+). And if Ce^(3+) and Ho^(3+) were separated in different layers, the color tuning would be depressed significantly due to the reduced cross-relaxation between Ho^(3+) and Ce^(3+). Moreover, the UC emission intensity of core@shell and core@shell@shell was enhanced significantly compared with that of unmodified core nanoparticles.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第7期629-636,共8页 稀土学报(英文版)
基金 Project supported by the National Key Basic Research Program of China(2013CB921800) the National Natural Science Foundation of China(11374291,11204292,11274299,11311120047) the Fundamental Research Funds for the Central Universities(WK2030020021)
关键词 core@shell structure upconversion color tuning rare earths core@shell structure upconversion color tuning rare earths
  • 相关文献

同被引文献18

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部