期刊文献+

Microstructure and tensile behavior of 2D-C_f/AZ91D composites fabricated by liquid–solid extrusion and vacuum pressure infiltration 被引量:2

Microstructure and tensile behavior of 2D-C_f/AZ91D composites fabricated by liquid–solid extrusion and vacuum pressure infiltration
原文传递
导出
摘要 2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between fibers and matrix and protect the fiber, pyrolytic carbon(Py C) coating was deposited on the surface of T700 carbon fiber by chemical vapor deposition(CVD). Microstructure observation of the composites revealed that the composites were well fabricated by LSEVI. The segregation of aluminum at fiber surface led to the formation of Mg_(17)Al_(12) precipitates at the interface. The aluminum improved the infiltration of the alloy and Py C coating protected the fibers effectively. The ultimate tensile strength of 2D-C_f/AZ91 D composites was about 400 MPa. The fracture process of 2D-C_f/AZ91 D composites was transverse fiber interface cracking–matrix transferring load–longitudinal fibers bearing load–longitudinal fibers breaking. 2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between fibers and matrix and protect the fiber, pyrolytic carbon(Py C) coating was deposited on the surface of T700 carbon fiber by chemical vapor deposition(CVD). Microstructure observation of the composites revealed that the composites were well fabricated by LSEVI. The segregation of aluminum at fiber surface led to the formation of Mg_(17)Al_(12) precipitates at the interface. The aluminum improved the infiltration of the alloy and Py C coating protected the fibers effectively. The ultimate tensile strength of 2D-C_f/AZ91 D composites was about 400 MPa. The fracture process of 2D-C_f/AZ91 D composites was transverse fiber interface cracking–matrix transferring load–longitudinal fibers bearing load–longitudinal fibers breaking.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第6期541-546,共6页 材料科学技术(英文版)
基金 supported by the National Nature Science Foundation of China (Nos. 51472203, 51521061, 51575447 and 51432008)
关键词 Magnesium matrix composites Microstructure Tensile properties Fracture behavior Magnesium matrix composites Microstructure Tensile properties Fracture behavior
  • 相关文献

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部