摘要
针对捷联惯导姿态更新算法中的不可交换误差补偿系数求解问题,论文在多项式角运动条件下建立了角速度多项式、角增量多项式与多子样角增量采样之间的线性关系,根据等效旋转矢量微分方程中不可交换误差多项式的向量叉乘特点,将叉乘转化为多项式系数的卷积运算,推导给出了计算任意子样数不可交换误差补偿系数的数值方法,新方法易于软件编程实现。最后,通过仿真计算给出了2~6子样误差补偿系数,其中2~4子样结果与已有文献完全相同,而5、6子样为首次给出。
In a strapdown attitude updating algorithm, a general numerical method for obtaining the multi-sample noncommutativity error compensation coefficients is presented. Under the condition of the angular motion expressed as polynomial, the linear relationships between the angular velocity polynomial, angular increment polynomial and multisample angular increments are established in this paper. According to the vector cross product operation of the noncommutativity error polynomial in the equivalent rotation vector differential equation, the cross product is converted into the convolution operation of the polynomial coefficients. Then, the numerical methods to compute the noncommutativity error compensation coefficients of the arbitrary multiple samples are presented in deduction, which are easy to be implemented with computer programming. Finally, simulations are carried out to obtain the 2 - 6-sample compensation coefficients, in which the 2 -4-sample coefficients are consistent with the existing literatures and the 5 or 6-sample coefficients are firstly proposed by the authors.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2017年第7期723-727,共5页
Journal of Astronautics
基金
航空科学基金(20165853041)
关键词
捷联姿态更新算法
等效旋转矢量
不可交换误差
数值解
Strapdown attitude algorithm
Equivalent rotation vector
Noncommutativity error
Numerical solution