期刊文献+

基于温差均匀性因子协进化的双层算法同步优化换热网络 被引量:2

A Bi-level Algorithm Coevolved with the Uniformity Factor of Temperature Difference for Simultaneous Synthesis of Heat Exchanger Networks
原文传递
导出
摘要 针对同时存在整型变量和连续型变量的换热网络综合问题,提出一种双层优化方法。外层以换热网络的温差均匀性因子作为网络结构性能的评价指标,通过蒙特卡洛随机抽样技术产生试探结构,采用整型优化算法逐步进化外层结构;内层以最小年综合费用作为优化指标,采用动态更新子群的改进粒子群算法优化连续变量。优化结果表明,温差均匀性因子可以有效评价换热网络的结构性能,从而指导结构的进化;改进的粒子群算法具有更强的全局搜索能力,相关算例均找到了更优的网络设计,应用于工业生产实际,可以有效节约成本。 A bi-level simultaneous approach for heat exchanger network synthesis( HENS) is proposed to solve the problem containing complex integer and nonlinear variables. In the upper level,the structure optimization strategy is applied to optimize the test structures produced by Monte Carlo method,with the temperature uniformity factors of heat exchanger network as the performance evaluation indicators of each HEN structure. In the lower level,an improved particle swarm algorithm is proposed using dynamic update subgroups to optimize continuous variables,where the minimal total annual cost for each topology is set as the evaluation. The results show that the temperature uniformity of heat exchanger network can be used to evaluate the performance of the structure and guide the evolution of the structure effectively. The improved PSO algorithm has strong global searching ability. The proposed approach is applied to several cases from the literature,and the obtained optimal structures are better than those from other methods.
出处 《热能动力工程》 CAS CSCD 北大核心 2017年第7期17-23,共7页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金(51176125) 沪江基金研究基地专项(D14001)
关键词 换热网络 粒子群算法 动态子群 温差均匀性因子 heat exchanger network synthesis particle swarm optimization dynamic update subgroup temperature uniformity factor
  • 相关文献

参考文献11

二级参考文献119

  • 1严丽娣,霍兆义,尹洪超.粒子群算法最优同步综合换热网络[J].化工进展,2009,28(S1):439-442. 被引量:16
  • 2张勤,崔国民,关欣.基于蒙特卡罗遗传算法的换热网络优化问题[J].石油机械,2007,35(5):19-22. 被引量:16
  • 3王克峰,尹洪超,袁一.遗传算法最优同步综合换热网络[J].大连理工大学学报,1997,37(1):54-58. 被引量:23
  • 4Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5) : 745- 763. 被引量:1
  • 5Yee T F, Grossmann I E. Simultaneous optimization models for heat integration- Ⅱ. Heat exchanger network synthesis [ J ]. Computers and Chemical Engineering, 1990, 14(10): 1165- 1184. 被引量:1
  • 6Ravagnani M A S S, Silva A P, Arroyo P A, et al. Heat exchanger network synthesis and optimization using genetic algorithm[J]. Applied Thermal Engineering, 2005, 25(9) : 1003 - 1017. 被引量:1
  • 7Athier G, Floquet P, Pibouleau L, et al. Process optimization by simulated annealing and NLP. Application to Heat Exchanger Network Synthesis[J]. Computers and Chemical Engineering, 1997, 21(Supplement 1) : 475 - 480. 被引量:1
  • 8Lewin D R. A generalized method for HEN synthesis using stochastic optimization-Ⅱ: The synthesis of cost optimal networks[J]. Computers and Chemical Engineering, 1998, 22(10): 1387-1405. 被引量:1
  • 9Kennedy J, Eherhart R. Particle swarm optimization[ C] //Proceeding of IEEE International Conference on Neural Networks, Perth, Australia, 1995. Perth: IEEE, 1995. 被引量:1
  • 10Yu H M, Fang H P, Yao P J, et al. A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration[J ]. Computers and Chemical Engineering, 2000, 24(8) : 2023 - 2035. 被引量:1

共引文献97

同被引文献26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部