摘要
有机微孔聚合物(MOPs)在气体存储、吸附分离和非均相催化等领域具有优良性质而广受关注。近年来,超交联微孔聚合物的研究成为MOPs领域中的热点。本文分别以双三苯胺基和双9-(4-甲苯)咔唑基取代的2,5位硅杂环戊二烯为基本构筑单元通过Friedel-Crafts反应,在外加交联剂FDA和无水催化剂FeCl_3催化下制备两种超交联微孔聚合物,研究了结构组成对制备聚合物孔道性能和气体吸附性能的影响。氮气吸附测试结果表明,聚合物的BET比表面积的范围在711~947 m^2·g^(-1)。由于骨架中含有富氮基团以及具有较大的比表面积,在273 K/113 k Pa条件下,PPMCz S的CO_2吸附能力为2.45 mmol·g^(-1)。此外,PPMTPAS和PPMCzS具有优良的选择性吸附性能,对CO_2/N_2的选择性吸附分别是49.7和52.02。
Microporous organic polymers (MOPs) have drawn much attention because of their potential applications such as gas storage, separation and heterogeneous catalysis. There is great interest in the design, synthesis and property evaluation of hypercrosslinked microporous polymer. Two kinds of HCPs based on N-functionalized siloles were synthesized via the Friedel- Crafts alkylation reaction using formaldehyde demethyl acetal (FDA) as external crosslinkers in the presence of FeCl3. The structure of the polymers was characterized. These N-functionalized HCPs exhibited moderate surface areas ranging from 711 m2 · g-1 to 947 m2 · g-1. The carbazole-based polymer PPMCzS with the highest BET surface showed the highest CO2 uptake capacity of 2. 45 mmol · g-1 at 273 K and 113 kPa among the resulting polymer frameworks. As for separation of CO2, both PPMTPAS and PPMCzS exhibited relatively high CO2-over-N2 selectivities of 49.7 and 52. 02 at 273 K, respectively.
出处
《广州化工》
CAS
2017年第14期47-50,60,共5页
GuangZhou Chemical Industry
基金
国家自然科学基金(No.51103111)
教育部新世纪优秀人才支持计划(No.NCET-12-0714)
关键词
噻咯
超交联微孔聚合物
二氧化碳吸附
silole
hyper-cross-linked polymers
adsorption of carbon dioxide