期刊文献+

Structure Optimization of Wheel Force Transducer Based on Natural Frequency and Comprehensive Sensitivity 被引量:2

Structure Optimization of Wheel Force Transducer Based on Natural Frequency and Comprehensive Sensitivity
下载PDF
导出
摘要 The current research of wheel force transducer (WFT) mainly focuses on test signal processing and decoupling methods based on signal itself, while the WFT structure optimization research related to decreasing the mass and increase the natural frequency and comprehen- sive sensitivity is not enough. In order to improve the WFT test accuracy, a structure optimization method based on natural frequency and comprehensive sensitivity indicators is put forward. The WPT with 8-beam elastic body is used for the finite element modeling (FEM), in which the fol- lowing variations are taken into consideration: the con- nection type of elastic body with modified rim, the number of connection holes, and the respects of strain beam including the shape, the cross sectional area and the length, etc.. The test results shows that the natural frequency of the connecting block type is increased by 65.5% compared with the connecting seat type of elastic body & modified rim, and the main channel sensitivity is improved as well. The results show that the connecting block type will achieve the best comprehensive performance when the number of connecting holes between the elastic body and the modified rim is 20. And the thinner and longer strain beam with smaller cross section area is preferable within the scope of elastic body mechanical strength. This research proposes a novel structure optimization method for WFT which contributes to improve the measurement performance of WFT. The current research of wheel force transducer (WFT) mainly focuses on test signal processing and decoupling methods based on signal itself, while the WFT structure optimization research related to decreasing the mass and increase the natural frequency and comprehen- sive sensitivity is not enough. In order to improve the WFT test accuracy, a structure optimization method based on natural frequency and comprehensive sensitivity indicators is put forward. The WPT with 8-beam elastic body is used for the finite element modeling (FEM), in which the fol- lowing variations are taken into consideration: the con- nection type of elastic body with modified rim, the number of connection holes, and the respects of strain beam including the shape, the cross sectional area and the length, etc.. The test results shows that the natural frequency of the connecting block type is increased by 65.5% compared with the connecting seat type of elastic body & modified rim, and the main channel sensitivity is improved as well. The results show that the connecting block type will achieve the best comprehensive performance when the number of connecting holes between the elastic body and the modified rim is 20. And the thinner and longer strain beam with smaller cross section area is preferable within the scope of elastic body mechanical strength. This research proposes a novel structure optimization method for WFT which contributes to improve the measurement performance of WFT.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期973-981,共9页 中国机械工程学报(英文版)
基金 Supported by Anhui Provincal Natural Science Foundation of China (Grant No. 1608085ME109) National Natural Science Foundation of China (Grant Nos. 51675005, 51105001) State Key Laboratory of Automotive Safety and Energy, Tsinghua University, China (Grant No. KF14022)
关键词 Wheel force transducer Structureoptimization Basic vibration frequency Comprehensivesensitivity Finite element method Wheel force transducer Structureoptimization Basic vibration frequency Comprehensivesensitivity Finite element method
  • 相关文献

同被引文献20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部