期刊文献+

网格化知识迁移学习算法及其在碳能复合流优化中的应用 被引量:3

Grid Knowledge Transfer Learning Algorithm and Its Application in Carbon-Energy Combined-Flow Optimization
原文传递
导出
摘要 建立了计及碳责任分摊的碳能复合流优化模型,并提出了一种网格化知识迁移学习算法,以便实现电网的低碳、经济、安全最优运行。算法采用二值编码的方式实现连续-离散空间的转换,以解决连续状态-动作空间的学习和维数灾难问题;从优化任务的状态信息和最优Q值之间的关系从发,构建了知识迁移的基本框架;为了避免在弱联系环境下,整体性提取状态特征信息给学习网络带来干扰,影响迁移学习的准确性,提出了一种网格化信息提取方式,分散式地对各局部特征进行提取和迁移。最后,通过IEEE 118节点系统的碳能复合流优化仿真验证了算法的有效性。 This paper establishes a carbon-energy combined-flow optimization model with carbon responsibility sharing,and proposes a grid knowledge transfer learning algorithm to realize the low-carbon,economical and safe optimal operation of power grid. The algorithm uses the binary coding method to realize the continuous-discrete space conversion,in order to solve the continuous state-action space learning and dimension disaster problem. This paper constructs the basic framework of know ledge migration from the relationship betw een the state information of the optimization task and the optimal Q value. In order to avoid the interference of the state feature information in the weak connection environment to the learning network,which affects the accuracy of the migration learning,this paper proposes a kind of grid information extraction method for decentralized extraction and migration of each local feature. Finally,the effectiveness of this algorithm is verified by the carbon-energy combined-flow optimization model of IEEE 118-bus system.
出处 《电力建设》 北大核心 2017年第7期96-105,共10页 Electric Power Construction
基金 国家重点基础研究发展计划项目(973项目)(2013CB228205) 国家自然科学基金项目(51477055)~~
关键词 碳能复合流优化 网格化知识迁移 连续Q学习 optimization of carbon-energy combined-flow grid knowledge migration continuous Q learning
  • 相关文献

参考文献6

二级参考文献53

  • 1王建学,王锡凡,陈皓勇,王秀丽.基于协同进化法的电力系统无功优化[J].中国电机工程学报,2004,24(9):124-129. 被引量:76
  • 2唐跃中,张王俊,张健,陈明.基于CPS的AGC控制策略研究[J].电网技术,2004,28(21):75-79. 被引量:61
  • 3张洪铖,王青.最优控制理论与应用[M].北京:高等教育出版社,2006. 被引量:5
  • 4Jaleeli N, Vanslyck L S. NERC's new control performance standards[J]. IEEE Trans. on Power Systems, 1999, 14(3): 1091-1099. 被引量:1
  • 5Yao M, Shoults R R, Kelm R. AGC logic based on NERC's new control performance standard and disturbance control standard [J]. IEEE Trans. on Power Systems, 2000, 15(2): 855-857. 被引量:1
  • 6Feliachi A, Rerkpreedapong D. NERC compliant load frequency control design using fuzzy rules[J]. Electric Power Systems Research, 2005, 73(1): 101-106. 被引量:1
  • 7Nedzad A, Ali F, Dulpichet R. CPS1 and CPS2 compliant wedge-shaped model predictive load frequency control [C]. Proceedings of IEEE Power Engineering Society General Meeting, Piscataway, USA, 2004. 被引量:1
  • 8Jalceli N, VanSlyck L S. Tie-lie bias prioritized energy control [J]. IEEETrans. on Power Systems, 1995, 10(1): 51-59. 被引量:1
  • 9Yu T, Zhou B. A novel self-tuning CPS controller based on Q-learning method[C]. In Proceedings of IEEE Power and Energy Society General Meeting, Pennsylvania, USA, 2008. 被引量:1
  • 10Watldns J C H, Peter D. Q-learning[J]. Machine Leaning, 1992(8): 279-292. 被引量:1

共引文献252

同被引文献55

引证文献3

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部