期刊文献+

基于HS-BP神经网络的认知无线电频谱预测技术 被引量:7

Cognitive Radio Spectrum Prediction Technology Based on HS-BP Neural Network
下载PDF
导出
摘要 在基于反向传播神经网络(BPNN)的频谱预测中,网络的初始权重与阈值是随机产生的,并且BP算法本身存在陷入局部最优的缺陷,从而导致BPNN训练得到的网络结构具有一定的不确定性。针对上述问题,提出一种基于HS-BP神经网络的频谱预测算法,通过和声搜索算法的全局寻优能力得到BPNN的最优初始权重和阈值,从而BPNN训练可得到最优的频谱预测网络结构,并运用该网络结构进行频谱的预测。仿真结果表明,该算法可以提高频谱预测的准确性及频谱的利用率。 Initial weight and threshold are random in the process of training Back Propagation Neural Network( BPNN). Moreover,BP algorithm is easy to fall into local optimum,so the training of BP neural network is uncertain to get the optimal network structure. To solve this problem,this paper proposes a spectrum prediction method of HS-BP neural network. Using the global optimization capability of harmony search algorithm,it can get the optimal initial weights and thresholds of the BP neural network,ensuring optimal BP neural network structure of training,ultimately,it can use the optimal BP neural network structure of training to predict the spectrum. Simulation results showthat the algorithm can improve the accuracy of spectrum prediction and further improve the utilization of the spectrum.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第7期146-150,155,共6页 Computer Engineering
基金 国家自然科学基金(71272144) 国家自然科学基金青年基金(61503143)
关键词 认知无线电网络 反向传播神经网络 和声搜索算法 频谱预测 频谱感知 机器学习 Cognitive Radio Network(CRN) Back Propagation Neural Network(BPNN) Harmony Search(HS) algorithm spectrum prediction spectrum sensing machine learning
  • 相关文献

参考文献4

二级参考文献18

  • 1Geem Z W,Kim J H,Loganathan G V.A New Heuristic Optimization Algorithm:Harmony Search[J].Simulation,2001,76(2):60-68. 被引量:1
  • 2Mahdavi M,Fesanghary M,Damangir E.An Improved Harmony Search Algorithm for Solving Optimization Problems[J].Applied Mathematics and Computation,2007,188(2):1567-1579. 被引量:1
  • 3Omran M G H,Mahdavi M.Global-best Harmony Search[J].Applied Mathematics and Computation,2008,198(2):643-656. 被引量:1
  • 4Zhang Minli, Qiao Shanshan. Research on the application of artificial neural networks intender offer for construction projects [J]. Physies Procedia, 2012, 24: 1781-1788. 被引量:1
  • 5Wei Huiming, Su GH, Qiu SZ, et al. Applications of genetic neural network for prediction of critical heat flux [J]. Interna tional Journal of Thermal Sciences, 2010, 49 (1): 143-152. 被引量:1
  • 6Wang Yongli, Niu Dongxiao, Ji Li. Short-term power load forecasting based on IVL-BP neural network technology[J].Systems Engineering Procedia, 2012, 11 (4): 168-174. 被引量:1
  • 7Ratti Gonttirktn. Estimation of medicine amount used anes thesia by an artificial neural network [J]. Journal of Medical Systems, 2010, 34 (5): 941-946. 被引量:1
  • 8Tuo Zhong, Wang liyuan. Improved BP neural network's ap- plication in the bank early warning[J]. Procedia Engineering, 2011, 11 (1): 216-221. 被引量:1
  • 9Liu YP, Wu MG, Qian JX. Predicting coal ash fusion tempe- rature based on its chemical composition using ACBP neural network [J]. Thermochimica Aeta, 2007, 454 (1): 64-68. 被引量:1
  • 10Liu Ke, Guo Wenyan, Shen Xiaoliu. Research on the forecast model of electricity power industry loan based on GBP neural network [J].Energy Procedia, 2012, 14: 1918-1924. 被引量:1

共引文献64

同被引文献33

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部