摘要
为进一步提高ZigBee自组网的网络性能,对ZigBee自组网和路由算法两方面进行研究。利用ZigBee技术构建网络,在路由路径更新时综合考虑网络节点能量均衡和收敛速度,采用改进遗传算法搜索到全局较优解,并利用粒子群优化算法从中快速找到最优解的最佳路由路径。基于NS2的仿真结果表明,与经典AODVjr路由算法和基于遗传算法的路由算法相比,混合遗传粒子群优化算法可延长网络的生命周期,减小网络延时,提高ZigBee网络的整体性能,更适合规模较大的复杂网络。
To further improve the networking capability of ZigBee Ad Hoc network,this paper researches ZigBee Ad Hoc network and its route algorithms. Firstly,a network is created by the ZigBee technology. Then,the energy balance of network nodes and the convergence rate are taken into account when the network updates its routing path. Finally,an improved Genetic Algorithm( GA) is applied to search the global better solution,and a Particle Swarm Optimization( PSO) algorithm is adapted to quickly search the global optimal solution. Simulation results in NS2 showthe superiority of GA-PSO algorithm in network lifetime and propagation delay by comparing with traditional AODVjr route algorithm and the route algorithm based on GA. It is more suitable for the larger complex network.
出处
《计算机工程》
CAS
CSCD
北大核心
2017年第7期75-79,共5页
Computer Engineering
基金
国家自然科学基金(61074046)
中央高校探索创新基金(CCNU15A02060)
中国-乌克兰国际合作基金(CU01-11)
关键词
ZigBee自组网
物联网
遗传算法
最佳路由
粒子群优化算法
ZigBee Ad Hoc network
Internet of Things(IoT)
Genetic Algorithm(GA)
optimal routing
Particle Swarm Optimization (PSO) algorithm