期刊文献+

基于数字图像处理技术的人脸检测算法研究 被引量:3

Research on Face Detection Algorithm Based on Digital Image Processing Technology
下载PDF
导出
摘要 为了提高人脸检测的准确性及检测速度,需要对基于数字图像处理技术的人脸检测算法进行研究;使用当前方法进行人脸检测时,需要提取脸部特征数目较多、检测速度过慢,降低人脸检测效率;为此,提出一种基于数字图像处理技术的人脸检测算法;该方法首先获取人脸数字图像,通过拉开数字图像的灰度间距,使数字图像灰度均匀分布,进而提高数字图像对比度,使图像更加清晰,再通过Wiener维纳滤算法对处理后的数字图像进行图像平滑去噪,在此基础上使用Robert边缘检测算子方法对数字图像人脸边缘每个像素点检测,得到数字图像中人脸边缘的基本图像,将其输入到计算机数字图像处理系统中进行识别检测;实验仿真证明,所提算法在检测速度及准确性等方面具有明显的优势。 In order to improve the accuracy and speed of detection of face detection, the need for research on face detection algorithm based on digital image processing technology. The current method is used for face detection, facial feature extraction need more number, the detection speed is too slow, reduce the face detection efficiency. Therefore, proposed a face detection algorithm based on digital image processing technology. The method first gets face digital image by gray space opened the digital image, the digital image gray uniform distribution, so as to improve the image contrast, the image is more clear, and then through the Wiener Wiener filtering algorithm for image smoothing of digital image processing after Denoising, based on the use of Robert operator edge detection method for detection of digital image edge face of each pixel, the basic image for face detection in digital image, the input to the recognition and detection of computer digital image processing system. Simulation results show that the proposed algorithm has obvious advantages in the detection speed and accuracy etc..
作者 何莉 罗艳芳
出处 《计算机测量与控制》 2017年第7期273-275,281,共4页 Computer Measurement &Control
关键词 数字图像 图像处理 人脸检测 digital image image processing face detection
  • 相关文献

参考文献10

二级参考文献172

  • 1范玉华,马建伟.ASM及其改进的人脸面部特征定位算法[J].计算机辅助设计与图形学学报,2007,19(11):1411-1415. 被引量:12
  • 2Bosphorus3D人脸数据库[EB/OL].[2013-06-10].http://bospho-ms.ee.boun.edu.tr/default.aspx. 被引量:1
  • 3ZHANG Zhengyou. A flexible new technique for camera calibration [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22( 11 ) : 1330-1334. 被引量:1
  • 4Huang K,Aviyente S. Sparse representation for signal classification[A].2006. 被引量:1
  • 5Wright J,Yang A Y,A Ganesh. Robust face recognition via sparse representation[J].IEEE Transactions on Pattem Analysis and Machine Intelligence,2009,(02):210-227. 被引量:1
  • 6Gao Shenghua,Tsang I W,Chia L. Kernel sparse representation for image classification and face recognition[A].2010.1-14. 被引量:1
  • 7Yang M,Zhang L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary[A].2010. 被引量:1
  • 8YangJ,Yu K,Gong Y. Linear spatial pyramid matching using sparse coding for image classification[A].2009.1794-1801. 被引量:1
  • 9Wright J,Ma Y,Mairal J. Sparse representation for computer vision and pattern recognition[A].2010.1031-1044. 被引量:1
  • 10Huang J Z,Huang X L,Metaxas D. Simultaneous image transformation and sparse representation recovery[A].2008. 被引量:1

共引文献141

同被引文献17

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部