摘要
In this study, a method for determination of stations coordinates, Earth rotation parameters and gravity field coefficients in one solution from SLR data from LAGEOS and LEO is presented. A new software package based on the presented method has been developed. All recommendations from IERS Con- ventions 2010 have been included. In addition, some other perturbations and loading effects are taken into account: atmospheric tides, non-tidal atmosphere and ocean variability, albedo and non-tidal at- mospheric pressure loading. Results of different solutions with the use of only LAGEOS data or LAGEOS plus LEO satellites data are presented. Pole coordinates obtained from both solutions show comparable accuracy relative to IERS 08 C04 solution. As for UT1 corrections in terms of Length-of-Day an additional improvement in accuracy is found: 1.0 ms for LAGEOS and 0.2 ms for the combined LAGEOS + LEO solution. Time series of the estimated degree-2 gravity field coefficients show a very good agreement with results of the Center of Space Research (Austin/USA). As a final remark, some future mandatory steps are outlined.
In this study, a method for determination of stations coordinates, Earth rotation parameters and gravity field coefficients in one solution from SLR data from LAGEOS and LEO is presented. A new software package based on the presented method has been developed. All recommendations from IERS Con- ventions 2010 have been included. In addition, some other perturbations and loading effects are taken into account: atmospheric tides, non-tidal atmosphere and ocean variability, albedo and non-tidal at- mospheric pressure loading. Results of different solutions with the use of only LAGEOS data or LAGEOS plus LEO satellites data are presented. Pole coordinates obtained from both solutions show comparable accuracy relative to IERS 08 C04 solution. As for UT1 corrections in terms of Length-of-Day an additional improvement in accuracy is found: 1.0 ms for LAGEOS and 0.2 ms for the combined LAGEOS + LEO solution. Time series of the estimated degree-2 gravity field coefficients show a very good agreement with results of the Center of Space Research (Austin/USA). As a final remark, some future mandatory steps are outlined.