期刊文献+

基于水平集的自适应保边平滑分割 被引量:3

Adaptive Edge-Preserved Smoothing Segmentation on Level Set
下载PDF
导出
摘要 为了提高活动轮廓模型对自然图像的分割效果,提出了一种新的分割算法。首先将水平集和全变分有机结合,建立了保边平滑分割模型;其次运用聚类算法自适应选取平衡参数,避免了水平集曲线收敛于局部最优;最后根据水平集对不同平滑分量分割区域不同,设计了基于区域置信度的分割平滑收敛函数,解决了分割曲线消失问题。实验表明,该算法对自然图像分割测评分数高于传统活动轮廓分割算法,对图像纹理和噪声不敏感。 To improve the performance of the active contour segmentation algorithm on natural images, a novel segmentation algorithm is proposed. First, combining the level set with the total variation, an edge-preserving smoothing segmentation model is constructed. Then a kind of clustering algorithm is employed to learn the balance parameter adaptively to avoid the level set curve converges at the local optimal point. At last, according to the different smoothing components with different segmentation regions, the segmentation smoothing convergence function based on regional confidence is designed to solve segmentation curve vanishes. Experimental results show that the score of this algorithm is higher than that of the traditional active-contour-based segmentation algorithmsfor the real images, and the algorithm is insensitive to texture and noise.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2017年第4期579-584,共6页 Journal of University of Electronic Science and Technology of China
基金 四川省科技支撑计划项目(2013SZ0157)
关键词 保边平滑 图像分割 水平集 区域置信度 edge-preserved smoothing image segmentation level set regional confidence
  • 相关文献

参考文献5

二级参考文献81

  • 1马义德,齐春亮,钱志柏,史飞,张在峰.基于脉冲耦合神经网络和施密特正交基的一种新型图像压缩编码算法[J].电子学报,2006,34(7):1255-1259. 被引量:8
  • 2Kass M,Witkin A,Terzopoulos D.Snakes:Active contour models[J].International Journal of Computer Vision,1988,1(4):321-331. 被引量:1
  • 3Osher S,Sethian J A.Fronts propagating with curvature dependent speed:algorithms based on Hamilton-Jacobi formulation[J].Journal of Computational Physics,1988,79(1):12-49. 被引量:1
  • 4Ayed I B,Mitiche A,Belhadj Z.Multiregion level-set partitioning of synthetic aperture radar images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):793-800. 被引量:1
  • 5Silveira M,Heleno S.Separation between water and land in SAR images using region-based level sets[J].IEEE Geoscience and Remote Sensing Letters,2009,6(3):471-475. 被引量:1
  • 6Galland F,Nicolas J M,Sportouche H,et al.Unsupervised synthetic aperture radar image segmentation using fisher distributions[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(8):2966-2972. 被引量:1
  • 7Sumengen B,Manjunath B S.Graph partitioning active contours (GPAC) for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):509-521. 被引量:1
  • 8Bertelli L,Sumengen B,Manjunath B S,et al.A variational framework for multiregion pairwise-similarity-based image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(8):1400-1414. 被引量:1
  • 9Ren X F,Malik J.Learning a classification model for segmentation[C] //Proceedings of the 9th IEEE International Conference on Computer Vision,Nice,2003:10-17. 被引量:1
  • 10Sethian J A.Fast marching methods[J].SIAM Review,1999,41(2):199-235. 被引量:1

共引文献48

同被引文献16

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部