期刊文献+

具有p-Laplacian算子的共振微分方程组解的存在性 被引量:1

Existence of solutions for differential equations systems with p-Laplacian at resonance
下载PDF
导出
摘要 为了研究具有非线性分数阶微分算子的微分方程共振边值问题解的存在性,引入了推广的Mawhin连续定理,通过定义合适的Banach空间及范数,给出恰当的算子,运用Mawhin连续定理的拓展,研究了具有p-Laplacian算子的分数阶共振微分方程组边值问题解的存在性。通过举例验证了所得结论的正确性。所得结论是共振边值问题现有成果的推广和一般化,对进一步研究具有一定参考价值。 In order to study the existence of solutions for boundary value problems at resonance with nonlinear fractional differential operator,ageneralization of Mawhin's continuous theorem is introduced.By defining suitable Banach space and norm,constructing the proper operators and using the extension of Mawhin continuation theorem,the existence of solutions for fractional differential equations systems boundary value problem with p-Laplacian at resonance is studied.An example is given to illustrate the main results.The results are the improvement and generalization of some existing results of boundary value problems at resonance.
出处 《河北科技大学学报》 CAS 2017年第4期341-351,共11页 Journal of Hebei University of Science and Technology
基金 河北省自然科学基金(A2013208108)
关键词 常微分方程 边值问题 共振 Mawhin连续定理的拓展 P-LAPLACIAN算子 ordinary differential equation boundary value problem resonance the extension of Mawhin's continuation theorem p-Laplacian operator
  • 相关文献

参考文献2

二级参考文献1

共引文献1

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部