期刊文献+

混合正则化约束的湍流退化图像复原算法 被引量:6

Blind turbulence-degraded image restoration algorithm based on hybrid regularization constraint
下载PDF
导出
摘要 针对大气湍流引起的红外图像模糊问题,提出一种基于混合正则化的模糊核估计模型。根据图像主要边缘的稀疏性,采用图像梯度的L_0范数为正则化项;通过分析模糊核的特性,提出能适用于复杂模糊情况的核L_0-L_2范数正则化约束。复原模型的优化过程中,结合变量分裂策略和增广拉格朗日法交替估计图像和模糊核,并利用快速傅里叶变换,实现模糊核的快速、准确估计;最终根据估计的模糊核,复原得清晰图像。实验结果表明,本文算法可以更好地复原退化图像,在主观视觉和客观质量评价方面都有所提高。 A blur kernel estimation method based on hybrid regularization is proposed to restore the blurred infrared image caused by turbulence. Firstly,according to the sparsity of the prominent edges and the smoothing of homogenous regions in the natural image, a L0-norm of image gradient is as regularization item. Through analyzing the feature of the blur kernel,a L0 - L2-norm regularization constraint is applied to the complex blur situation. Secondly, the image and the blur kernel were estimated ahernately by the variate splitting and augmented Lagrangian method in the optimization procedure of restoration model. The fast and accurate estimation of the blur kernel was achieved by FFT, Finally,the clear image was restored by the estimated blur kernel. Experimental results demonstrate that the proposed algorithm can better restore the degraded image,and the subjective vision and the objective measuremeut have been improved.
出处 《激光与红外》 CAS CSCD 北大核心 2017年第7期884-888,共5页 Laser & Infrared
基金 国家自然科学基金项目(No.61175120)资助
关键词 盲复原 L0正则化 增广拉格朗日法 湍流退化 红外图像 blind restoration L0-norm regularization augmented Lagrangian turbulence-degraded infrared image
  • 相关文献

参考文献4

二级参考文献43

  • 1张天序,洪汉玉,孙向华,宋治.基于估计点扩展函数值的湍流退化图像复原(英文)[J].自动化学报,2003,29(4):573-581. 被引量:17
  • 2赵剡,宗云花,张世军,杨秋英.气动光学效应降晰函数辨识与图像复原[J].兵工学报,2005,26(2):188-191. 被引量:6
  • 3Nagy J G, Plemmons R J, Torgersen T C. Iterative image restoration using approximate inverse preconditioning[ J]. IEEE Trans. on Image Processing, 1996,5 (7) : 1151 - 1162. 被引量:1
  • 4Jefferies S M, Christou J C. Restoration of astronomical images by iterative blind deconvolution [ J ]. The Astrophysical Journal, 1993,415:862 - 874. 被引量:1
  • 5Schulz T J. Multiframe blind deconvolution with real data: imagery of the Hubble Space Telescope [ J ]. Optics Express, 1997,1 ( 11 ) :355 - 362. 被引量:1
  • 6Frieden B R. An exact, linear solution to the problem of imaging through turbulence [ J ]. Optics. Comm., 1998, 150,15 -21. 被引量:1
  • 7Vogel C R, Oman M E. Iterative methods for variation denoising [J]. SIAM J. Sci. Comput., 1996, 17 (1): 227 - 238. 被引量:1
  • 8Chan T F, Wong C K. Total variation blind deconvolution [ J ]. IEEE Trans. on Image Processing, 1998,7 ( 3 ) : 370 - 375. 被引量:1
  • 9高新波,路文.视觉信息质量评价方法[M].西安:西安电子科技大学出版社,2011. 被引量:9
  • 10HONG H Y, LI L C, ZHANG T X. Blind restora-tion of real turbulence-degraded image with compli- cated backgrounds using anisotropic regularization [J].Optics Communications, 2012, 285(24): 4977 - 4986. 被引量:1

共引文献16

同被引文献44

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部