摘要
The design methods of typical supersonic aircraft intakes and shock wave compression technology have been applied to ram-rotor,an attractive compression system.A ram-rotor is of a typical structure including the compression ramp,the throat and the subsonic diffuser;a scrampressor is similar to ram-rotor,the only difference is that scrampressor has no subsonic diffuser.The work was the continuation of the preparatory work.In order to further study the effect of throat contraction ratio and strake stagger angle on the flow field and performance of a scrampressor,the flow field of a scrampressor with a three-dimensional flow path was numerically simulated with different throat contraction ratios and strake stagger angles.Simulated results indicated that the optional aerodynamic performance of a scrampressor could be achieved with an adiabatic efficiency of 0.8413atotal pressure recovery coefficient of 0.8446,a total pressure ratio of 7.14 and a static pressure ratio of 5.17for a throat contraction ratio of 0.6 and a strake stagger angle of 12°.It was therefore concluded that an appropriate decrease in throat contraction ratio and an increase in strake stagger angle could help the comprehensive improvement of a scrampressor in performance.
The design methods of typical supersonic aircraft intakes and shock wave compression technology have been applied to ram-rotor,an attractive compression system.A ram-rotor is of a typical structure including the compression ramp,the throat and the subsonic diffuser;a scrampressor is similar to ram-rotor,the only difference is that scrampressor has no subsonic diffuser.The work was the continuation of the preparatory work.In order to further study the effect of throat contraction ratio and strake stagger angle on the flow field and performance of a scrampressor,the flow field of a scrampressor with a three-dimensional flow path was numerically simulated with different throat contraction ratios and strake stagger angles.Simulated results indicated that the optional aerodynamic performance of a scrampressor could be achieved with an adiabatic efficiency of 0.8413atotal pressure recovery coefficient of 0.8446,a total pressure ratio of 7.14 and a static pressure ratio of 5.17for a throat contraction ratio of 0.6 and a strake stagger angle of 12°.It was therefore concluded that an appropriate decrease in throat contraction ratio and an increase in strake stagger angle could help the comprehensive improvement of a scrampressor in performance.
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2017年第5期1183-1194,共12页
Journal of Aerospace Power
基金
Fundamental Research Funds for the Central Universities(3132016205)
National Natural Science Foundation of China(51506020)
Natural Science Foundation of Liaoning Province(2015020636)
Program for Liaoning Innovative Research Team in University(LT2015004)