期刊文献+

On Conformable Delta Fractional Derivative on Time Scales

On Conformable Delta Fractional Derivative on Time Scales
下载PDF
导出
摘要 In this paper, we introduce and investigate the concept of conformable delta fractional derivative on time scales. By using the theory of time scales, we obtain some basic properties of the conformable delta fractional derivative. Our results extend and improve both the results in [9] and the usual delta derivative. In this paper, we introduce and investigate the concept of conformable delta fractional derivative on time scales. By using the theory of time scales, we obtain some basic properties of the conformable delta fractional derivative. Our results extend and improve both the results in [9] and the usual delta derivative.
出处 《Chinese Quarterly Journal of Mathematics》 2017年第2期208-215,共8页 数学季刊(英文版)
基金 Supported by the Educational Commission of Hubei Province(B2016160)
关键词 conformable delta fractional derivative delta derivative time scales conformable delta fractional derivative delta derivative time scales
  • 相关文献

参考文献3

二级参考文献26

  • 1HILGER S. ELn Makettenkalkl mit Anwendung auf Zentrumsmannigfaltigkeiten(in Gerraan)[D]. Bavaria: Universtat Wurzburg, 1988. 被引量:1
  • 2HILGER S. Analysis on measure chains unified approach to continuous and discrete calculus[J]. Results Math, 1990, 18(1): 18-56. 被引量:1
  • 3BOHNER M, PETERSON A. Advances in Dynamic Equations on Time Scales[M]. Boston: Birkhauser, 2004. 被引量:1
  • 4PETERSON A, THOMPSON B. HenstockCKurzweil delta and nabla integrals[J]. J Math Anal Appl, 2006, 323(1): 162-178. 被引量:1
  • 5GUSEINOV G SH. Integration on time scales[J]. J Math Anal Appl, 2003, 285(1): 107-127. 被引量:1
  • 6GUSEINOV G SH, KAYMAKCALAN B. Basics of Riemann delta and nabla integration on time scales[J]. J Difference Equations Appl, 2002, 8(11): 1001-1027. 被引量:1
  • 7AVSEC S, BANN1SH B, JOHNSON B, et al. The Henstock-Kurzweil delta integral on unbounded time scales[J]. PanAmerican Math J, 2006, 16(3): 77-98. 被引量:1
  • 8THOMSON B S. Henstock-Kurzweil integrals on time scales[J]. PanAmerican Math J, 2008, 18(1): 1-19. 被引量:1
  • 9LEE P Y, VYBORNY R. The Integral, an Easy Approach after Kurzweil and Henstock[Mj. Australian Mathematical Society Lecture Series 14, Cambridge; New York: Cambridge University Press, 2000. 被引量:1
  • 10DOUGLAS S K, CHARLES W S. Theories of Integration: the Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane[M]. Singapore: World Scientific, 2004. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部