期刊文献+

基于LWPT-DTW的间歇过程不等长时段数据同步化 被引量:1

LWPT-DTW trajectory synchronization of uneven-length phase data in batch processes
下载PDF
导出
摘要 间歇过程不等长时段数据直接影响数据驱动的多元统计分析时段建模精度,导致间歇过程的监控性能降低。针对间歇过程不等长时段数据问题,提出一种基于提升小波包变换(LWPT)和动态时间规整(DTW)算法的间歇过程不等长时段数据同步化方法。该方法引入LWPT对间歇过程不等长时段数据轨迹进行高低频的多级分解,充分提取数据轨迹的所有时频域信息;采用DTW算法对不同频段的系数矩阵进行同步化,并利用提升小波包逆变换对同步化后的系数矩阵进行合成,降低吉布斯现象对数据轨迹合成的影响,获得等长的时段轨迹,实现了间歇过程不等长时段数据同步化。青霉素发酵过程仿真实验表明,所提出的方法运算速度快、稳定,不等长时段数据的同步化结果具有较高的准确性,为间歇过程时段建模提供了可靠的过程数据。 Uneven-length phase data of batch processes directly affect phase modeling accuracy of data-driven multivariate statistical analysis, resulting in reduced process monitoring performance. A trajectory synchronization method of lifting wavelet package transform(LWPT) and dynamic time warping(DTW) was proposed for the uneven-length phase data of batch process. First, LWPT was used to decompose trajectories of uneven-length phase data at multiple levels of high and low frequency and extract complete time-frequency domain information. Secondly, DTW was used to synchronize coefficient matrices at different frequency bands. Finally, inverse LWPT was used to integrate synchronized coefficient matrices, to obtain the even-length phases, and to reduce the impact of the Gibbs phenomenon on data trajectory synthesis. The simulation results of penicillin fermentation batch process show that the new method calculates fast and stable with better accuracy of synchronization, which can provide reliable process data for data-driven phase modeling of batch processes.
出处 《化工学报》 EI CAS CSCD 北大核心 2017年第7期2866-2872,共7页 CIESC Journal
基金 国家自然科学基金项目(61240047) 北京市自然科学基金项目(4152041)~~
关键词 不等长时段数据 同步化 提升小波包变换 动态时间规整 间歇过程 uneven-length phase data trajectory synchronization lifting wavelet package transform dynamic time warping batch process
  • 相关文献

参考文献2

二级参考文献41

  • 1Chen J H, Chen H H.On-line batch process monitoring using MHMT-based MPCA[J].Chem. Eng. Sci., 2006, 61 (10):3223-3239. 被引量:1
  • 2Lu Ningyun, Gao Furong, Wang Fuli.Sub-PCA modeling and on-line monitoring strategy for batch processes[J].AIChE Journal, 2004, 50 (1):255-259. 被引量:1
  • 3Lu N Y, Gao F R, Wang F L.Stage-based multivariate statistical analysis for injection molding//Proceedings of International Symposium on Advanced Control of Chemical Processes[C].Hong Kong, 2004:471-476. 被引量:1
  • 4Zhao Chunhui, Wang Fuli, Lu Ningyun.Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes[J].Journal of Process Control, 2007, 17 (9):728-741. 被引量:1
  • 5Yew Seng Nga, Rajagopalan Srinivasan.An adjoined multi-model approach for monitoring batch and transient operations[J].Computers and Chemical Engineering, 2009, 33 (4):887-902. 被引量:1
  • 6Wold S, Geladi P, Esbensen K, et al.Multi-way principal components and PLS analysis[J].Journal of Chemometrics, 1987, 1 (1):41-56. 被引量:1
  • 7Nomikos P, MacGreor J F.Monitoring of batch process using multi-way principal component analysis[J].AIChE J., 1994, 40 (8):1361-1375. 被引量:1
  • 8Nomikos P, MacGregor J F.Multiway partial least squares in monitoring batch processes[J].Chemometrics and Intelligent Laboratory Systems, 1995, 30 (1):97-108. 被引量:1
  • 9Vndey Cenk, Cinar Ali.Statistical monitoring of multistage, multiphase batch process[J].IEEE Control Syst.Mag., 2002, 22 (10):40-52. 被引量:1
  • 10Lou werse D J, Smilde A K.Multivariate statistical process control of batch process based on three way models[J].Chemical Engineering Science, 2000, 55 (7):1225-1235. 被引量:1

共引文献15

同被引文献6

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部