期刊文献+

RZF预编码与MMSE-SIC检测联合的大规模MIMO系统预编码设计算法 被引量:1

An algorithm for precoding design for massive MIMO systems based on combining RZF precoding with MMSE-SIC detection
下载PDF
导出
摘要 研究了大规模多输入多输出(MIMO)系统的预编码设计算法。针对大规模MIMO系统通常利用增加用户天线数来提高系统频谱效率的方法会导致用户间干扰增大,从而对系统性能产生负面影响的问题,提出了一种将正则化迫零(RZF)预编码与最小均方误差-串行干扰消除(MMSE-SIC)检测相结合的改进算法。该算法通过在基站端采用RZF预编码对信号进行预处理以平衡用户间干扰和噪声干扰的影响,继而在接收端运用检测性能优异的MMSE-SIC算法来进一步减轻信号中的干扰,从而达到提升系统容量的目的。实验结果表明,这种将RZF预编码与MMSE-SIC检测相结合的改进算法,在用户间干扰较大时具有较好的适用性,且在完全已知和未完全已知信道状态信息情况下的频谱效率均优于传统RZF算法。 The precoding design of massive multiple imput multiple output (MIMO) systems was studied. Considering that massive MIMO systems use the increasement of the number of user antennas to improve the spectrum efficiency, but this brings more inter-user interference so causing the negative influence on the system performance, an improved precoding design algorithm using the combination of regularized zero-forcing (RZF) and minimum mean squared error-successive interference cancellation (MMSE-SIC) detection was proposed. The algorithm performs the signal pre-processing to balance the effect between inter-user interference and noise interference by using the RZF precoding algorithm in the base station, and then uses the MMSE-SIC detection algorithm to further reduce the signal interference, thus the system capacity is increased. The experimental results show that under the condition of the serious inter-user interference, the algorithm using the combination of RZF precoding and MMSE-SIC detection has the good applicability and its spectrum efficiency is better than the traditional RZF algorithm in the condition that the channel state information is conpletely known or completely unknown.
出处 《高技术通讯》 北大核心 2017年第3期237-244,共8页 Chinese High Technology Letters
基金 国家自然科学基金(61363076) 江西省自然科学基金(20142BAB207020)资助项目
关键词 大规模多输入多输出(MIMO) 预编码 信号检测 频谱效率 信道状态信息 massive multiple imput multiple output (MIMO), precoding, signal detection, spectrum effi- ciency, channel state information
  • 相关文献

参考文献5

二级参考文献76

  • 1Costa M. H. M. Writing on dirty paper[ J]. IEEE Trans. Inf. Theory, 1983, 29(3) : 439-441. 被引量:1
  • 2Caire G. and Shamai S. (Shitz). On the achievable through- put of a muhiantenna Gaussian broadcast channel[ J ]. IEEE Trans. Inf. Theory, 2003, 49(7): 1691-1706. 被引量:1
  • 3Viswanath P. and Tse D. N. C. Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality [J]. IEEE Trans. Inf. Theory, 2003, 49(8) :1912-1921. 被引量:1
  • 4Yu W. and Cioffi J.M. Sum capacity of Gaussian vector broadcast channels[J]. IEEE Trans. Inf. Theory, 2004, 50(9) : 1875-1892. 被引量:1
  • 5Rusek F. , Persson D. , Lau B. K. , et al. Scaling up MI- MO:Opportunities and challenges with very large arrays [J]. IEEE Signal Processing Magazine, 2013, 30( 1): 40 - 60. 被引量:1
  • 6Marzetta T. L. Noncooperative cellular wireless with un- limited numbers of BS antennas[ J]. IEEE Trans. Wire- less Commun. , 2010, 9( 11 ):3590-3600. 被引量:1
  • 7Tulino A. M. and Verdu S. Random Matrix Theory and Wireless Communications [ M ]. Now Publishers, 2004. 被引量:1
  • 8Hoydis J. , Brink S. ten, and Debbah M. Massive MIMO in the UL/DL of cellular networks: How many antennas do we need[J]. IEEE Journal on Selected Areas in Com- munications, 2013, 31 ( 2 ) : 160-171. 被引量:1
  • 9Stojnic M. ,Vikalo H. ,and Hassibi B. Rate maximization in multi-antenna broadcast channels with linear prepro- cessing[J].IEEE Trans. Wireless Cnmmun., 2006, 5 (9) : 2338-2342. 被引量:1
  • 10Jose J. ,Ashikhmin A. ,Whiting P. ,et al. Cha,mel estima- tion and linear preeoding in multiuser muhiple-antenna TDD systems [ J ]. IEEE Trans. Veh. Technol. , 2011,60 (5) :2102-2116. 被引量:1

共引文献24

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部