摘要
Ever since the first RNA nucleoside modification was charac- terized in 1957 [1], over 100 distinct chemical modifications have been identified in RNA to date [2]. Most of these modi- fications were characterized in non-coding RNAs (ncRNAs), including tRNA, rRNA, and small nuclear RNA (snRNA) [3]. Studies in the past few decades have located various mod- ifications in these ncRNAs and revealed their functional roles [3]. For instance, NLmethyladenosine (mlA), which is typically found at position 58 in the tRNA T-loop of eukaryotes, func- tions to stabilize tRNA tertiary structure [4] and affect transla- tion by regulating the associations between tRNA and polysome [5]. Pseudouridine (tp) in snRNA can fine-tune branch site interactions and affect mRNA splicing [6].
Ever since the first RNA nucleoside modification was charac- terized in 1957 [1], over 100 distinct chemical modifications have been identified in RNA to date [2]. Most of these modi- fications were characterized in non-coding RNAs (ncRNAs), including tRNA, rRNA, and small nuclear RNA (snRNA) [3]. Studies in the past few decades have located various mod- ifications in these ncRNAs and revealed their functional roles [3]. For instance, NLmethyladenosine (mlA), which is typically found at position 58 in the tRNA T-loop of eukaryotes, func- tions to stabilize tRNA tertiary structure [4] and affect transla- tion by regulating the associations between tRNA and polysome [5]. Pseudouridine (tp) in snRNA can fine-tune branch site interactions and affect mRNA splicing [6].
基金
supported by the National Key Research and Development Program from the Ministry of Science and Technology of China(Grant No.2016YFC0900300)
the Beijing Natural Science Foundation(Grant No.5162012)of China awarded to CY