期刊文献+

基于光谱融合的手掌异常纹识别

Abnormal Palmprint Recognition Based on Spectral Fusion
下载PDF
导出
摘要 针对现有掌部封闭型病理纹识别算法提取的线特征较少、识别率较低的问题,提出一种基于非下采样剪切波变换(NSST:Nonsubsample Shearlet Transform)域光谱融合的手掌异常纹识别算法。首先,选取融合效果最佳的多光谱掌纹波段组合,并在NSST域内进行多尺度、多方向的分解;其次,根据分解各层子带图像的特点设计融合规则进行相应系数矩阵的融合,再通过NSST逆变换和形态学处理提取精细纹路特征;然后,利用像素点的度特点寻找符合要求的闭合纹线回路;最后,采用一种基于矩形度和偏心率等形状描述符的方法识别封闭型异常纹。实验结果表明,该识别方法能提取丰富的掌纹线特征,同时,还可准确识别6种不同类型的封闭型病理纹,识别率可达90%以上。 In order to solve the shortcoming of fewer extracted line feature and lower recognition rates of pathologic palmprint recognition algorithm,we proposed a recognition algorithm of pathologic palmprint based on spectral fusion in non-subsampled shearlet domain. Firstly,the best spectral fused combination of multispectral palmprint is selected. And it is decomposed to the multi-directions,multi-scales in non-subsampled shearlet domain. Next,according to all levels characteristics of sub-bands images which had been decomposed,a new fusion rule is designed to fuse the corresponding coefficient matrices. The fine lines feature of palmprint can be obtained by the inverse transformation of the NSST( Nonsubsample Shearlet Transform) and the process of mathematical morphology. Then the satisfactory closed circuits are searched by degree feature of pixels. Finally,we proposed a method of combining the shape descriptors based on rectangle degree and eccentricity to recognize closed pathologic palmprint. Experimental results show that this algorithm can extract rich feature of the palmprint line, and can recognize six different types of closed pathologic palmprints accurately and the recognition rate is more than 90%.
出处 《吉林大学学报(信息科学版)》 CAS 2017年第3期280-287,共8页 Journal of Jilin University(Information Science Edition)
基金 吉林省重点科技攻关基金资助项目(20140204046)
关键词 非下采样shearlet变换 光谱融合 掌纹 闭合回路 异常纹 nonsubsample shearlet transform(NSST) spectral fusion palmprint closed circuit pathologic palmprint
  • 相关文献

参考文献6

  • 1王晨霞著..王晨霞掌纹诊病治病[M].哈尔滨:北方文艺出版社,2007:380.
  • 2王晨霞著..现代掌纹诊病图谱[M].南宁:广西科学技术出版社,2000:376.
  • 3廖静..面向手掌诊病的奇异纹识别算法研究[D].哈尔滨工业大学,2006:
  • 4康冰..基于身体健康状况表征的人体掌部精细纹路和颜色提取算法研究[D].吉林大学,2016:
  • 5王志涛..基于手掌诊病的图像特征提取研究[D].吉林大学,2014:
  • 6张小利,李雄飞,李军.融合图像质量评价指标的相关性分析及性能评估[J].自动化学报,2014,40(2):306-315. 被引量:109

二级参考文献2

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部