期刊文献+

Marcinkiewicz积分交换子的BMO估计

BMO estimate for the commutators of Marcinkiewicz integrals
下载PDF
导出
摘要 Marcinkiewicz积分交换子由Marcinkiewicz积分算子和BMO函数所生成,是调和分析中的重要算子.将变指标Herz型Hardy空间上的原子分解定理进行适当推广,利用其证明了Marcinkiewicz积分交换子在变指标Herz型Hardy空间上的有界性. The commutator of Marcinkiewicz integral,which is generated by the Marcinkiewicz integral and BMO function,is very important in harmonic analysis.Using the extended atomic decomposition characterizations of Herz-type Hardy spaces with variable exponent,we obtain the boundedness of the commutator of Marcinkiewicz integral on the Herz-type Hardy spaces with variable exponent.
出处 《山东理工大学学报(自然科学版)》 CAS 2017年第4期24-29,共6页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金项目(11171345) 山东省自然科学基金项目(ZR2015PA001)
关键词 MARCINKIEWICZ积分 交换子 HERZ型HARDY空间 BMO Marcinkiewicz integral commutator Herz-type Hardy space BMO
  • 相关文献

参考文献5

二级参考文献35

  • 1DING Yong, LU Shanzhen & ZHANG PuDepartment of Mathematics, Beijing Normal University, Beijing 100875, China,Department of Information and Computing Science, Zhejiang Institute of Science and Technology, Hangzhou 310033, China.Weighted weak type estimates for commutators of the Marcinkiewicz integrals[J].Science China Mathematics,2004,47(1):83-95. 被引量:25
  • 2丁勇,陆善镇,张璞.Weak estimates for commutators of fractional integral operators[J].Science China Mathematics,2001,44(7):877-888. 被引量:15
  • 3Welland G V. Weighted norm inequalities for fractional integrals[J]. Proe Amer Math Soc,1975,51 (1) :143-148. 被引量:1
  • 4Auscher P, Martell J M. Weighted norm inequalities for fractional operators [ J ]. Indiana Univ Math J, 2008,57 ( 4 ) : 1845 -1870. 被引量:1
  • 5Kovacik O,Rakosnik J. On spaces Lp^(x) and W^k.p(x) [ J]. Czechoslovak Math J, 1991,41 (4) : 592-618. 被引量:1
  • 6Diening L, Harjulehto P, Hiists P, et al. Lebesgue and Sobolev Spaces with Variable Exponents [ M]. Heidelberg: Springer, 2011. 被引量:1
  • 7Cruz-Uribe D V, Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Applied and Numerical Harmonic Analysis) [ M ]. Heidelberg : Birkhiiuser/Springer, 2013. 被引量:1
  • 8Diening L. Riesz potential and Sobolev embeddings of generalized Lebesgue and Soblev spaces L^p(·) and W^k,p(·) [ J ].Math Nachr,2004,268 ( 1 ) :31-43. 被引量:1
  • 9Xu Jingshi. Variable Besov and Triebel-Lizorkin spaces [ J ]. Ann Acad Sci Fenn Math ,2008,33 (2) :511-522. 被引量:1
  • 10Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characteriza- tion[J]. Anal Math,2010,36( 1 ) :33-50. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部