摘要
在反问题框架内,基于偏微分方程最优化控制理论的伴随同化方法,建立了融合动力模型和观测信息的地下公路隧道污染物对流扩散反问题的计算模型,并给出了模型求解方法。以对流扩散方程中的源项为例进行了反演计算,并利用反演计算出的源项对污染物浓度进行了预测。研究表明,与传统的正问题模型相比,反问题模型反演计算得到的源项可以动态地反映隧道内车流量、车速、排放特性等因素的综合影响,并且计算得到的污染物浓度场精度更高。应用该方法,通过有效的对各类污染物观测资料进行客观利用,可以识别一些不确定参数,从而更好地实现对污染物浓度分布的分析与预测。
Based on the adjolnt assimilation method of optimal control theory of partial differential equation, a pollutant convection diffusion inverse problem model of urban tunnel is established and solved. This model is combined with dynamic model and observed data to solve pollutant diffusion problem. The source term of convection diffusion equation was taken as an example to make inversion calculation, and the calculated value of source term was used to predict the concentration of pollutants. Research shows that, comparing with the calculated result of direct model, the source term calculated by inverse problem method can dynamic reflect the influence of factors such as tunnel traffic, speed, discharge characteristics. The calculated values of inverse problem model are close to the measured ones. By using various pollutants objective observation data, this method can be effectively used to identify some uncertain parameters. Forecast analysis and prediction of pollutant concentration can be better realized.
出处
《地下空间与工程学报》
CSCD
北大核心
2017年第3期804-808,共5页
Chinese Journal of Underground Space and Engineering
基金
"十二五"国家科技支撑计划资助项目(2012BAJ01B03)
国家自然科学基金(51378024)
北方工业大学优秀青年教师培养计划
关键词
城市地下道路
机动车污染物排放与扩散
排放强度(源项)
反问题模型
伴随同化
urban tunnel
motor traffic pollutant emission and diffusion
emission intensity ( source item )
inverse problem model
adjoint assimilation