期刊文献+

YIG Thin Film for RF Integrated Inductor 被引量:3

YIG Thin Film for RF Integrated Inductor
下载PDF
导出
摘要 The yttrium iron garnet(YIG) thin films prepared by the sol-gel method and rapid thermal annealing(RTA) process for integrated inductor are investigated. The X-ray diffraction(XRD) results indicate that the YIG film annealed above 650 ℃ is poly-crystalline with single-phase garnet structure. Moreover, it can be found that the initial permeability μi, saturation magnetization MS and coercivity Hc of these YIG films increase with increasing RTA temperature. Low temperature annealing after crystallization can further improve the magnetic properties of YIG film. Thereby, a planar integrated inductor in the presence of Si substrate/SiO2 layer/Y2.8Bi0.2Fe5O12 thin film/Cu spiral coil structure is fabricated successfully by the standard IC processes. Due to the magnetic enhancement originated from YIG film, the inductance L and quality factor Q of the inductor with YIG film are improved in a certain frequency range. The yttrium iron garnet(YIG) thin films prepared by the sol-gel method and rapid thermal annealing(RTA) process for integrated inductor are investigated. The X-ray diffraction(XRD) results indicate that the YIG film annealed above 650 ℃ is poly-crystalline with single-phase garnet structure. Moreover, it can be found that the initial permeability μi, saturation magnetization MS and coercivity Hc of these YIG films increase with increasing RTA temperature. Low temperature annealing after crystallization can further improve the magnetic properties of YIG film. Thereby, a planar integrated inductor in the presence of Si substrate/SiO2 layer/Y2.8Bi0.2Fe5O12 thin film/Cu spiral coil structure is fabricated successfully by the standard IC processes. Due to the magnetic enhancement originated from YIG film, the inductance L and quality factor Q of the inductor with YIG film are improved in a certain frequency range.
作者 刘锋 叶双莉
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期557-561,共5页 武汉理工大学学报(材料科学英文版)
基金 Funded by the National Natural Science Foundation of China(No.11174226)
关键词 Y2.8Bi0.2Fe5O12 thin films sol-gel method rapid thermal annealing integrated inductor Y2.8Bi0.2Fe5O12 thin films sol-gel method rapid thermal annealing integrated inductor
  • 相关文献

同被引文献13

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部