期刊文献+

基于随机森林算法的小鼠micro-CT影像中骨骼关节特征点定位 被引量:7

Bone Joints Localization in Mouse Micro-CT Images Using Random Forests Algorithm
下载PDF
导出
摘要 随着小动物成像技术的发展,技术人员每天需要处理的小动物影像数量急剧增长,这使得自动化的小动物图像分析方法成为迫切的需求。在小鼠图像分析方面,小鼠灵活多变的身体姿态给自动化的图像分析带来困难。基于随机森林算法实现小鼠micro-CT图像中骨骼关节点的自动定位,为解决小鼠影像中身体姿态的自动识别打下基础。该算法主要分3步:先通过分类随机森林算法得到小鼠骨骼关节点的粗定位,再通过回归随机森林算法进一步减小定位误差,最后通过图匹配的方法在备选点中挑选正确位置上的关节点。对49例不同身体姿态的小鼠全身三维micro-CT图像进行测试,全身关节点定位的成功率为98.27%,定位误差的中值为0.68 mm。同时验证联合使用分类与回归随机森林的必要性,并探究训练数据的数量对不同骨关节的识别效果的影响。研究为小鼠micro-CT影像中身体姿态的识别提供一种新方法,为后续的自动化图像配准、图像分割以及自动化图像测量提供重要的定位信息。 Along with the rapid development of imaging techniques for small animals, more and more images obtained from small animals need to be analyzed per day, therefore automated image analysis method has become an urgent demand. For mice images, the significant inter-subject posture variations become a major difficulty for automated image analysis. In this paper, an automatic bone joint localization method was developed for mouse micro-CT images, so as to help with posture identification of mouse body. The proposed method was composed of three steps: (1) classification random forests for rough joint localization, (2) aggregating the results of classification through regression forest, and (3) picking up landmarks in the right position by the mapping graph. The method achieved automatic bone joint localization for 49 test images of different body postures. The median localization error of the whole body CT images was 0.68 mm. The success rate of localization was 98.27%. We also demonstrated the necessity of combining classification and regression random forest and discussed the influence on localization with different number of training data. With this new method for mouse miero-CT posture identification was expected to provide helpful information for the subsequent image registration, segmentation and measurements.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2017年第3期257-266,共10页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61571076) 国家自然科学基金青年基金(81401475) 辽宁省自然科学基金(2015020040)
关键词 小动物影像分析 骨关节点定位 随机森林 模式识别 显微CT small animal image analysis bone joint localization random forest pattern recognition micro-CT
  • 相关文献

参考文献4

二级参考文献114

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 3Breiman L. Bagging Preditors [J].Machine Learning, 1996,24(2). 被引量:1
  • 4Dietterich T. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization [J].Machine Learning, 2000,40(2). 被引量:1
  • 5Ho T K. The Random Subspace Method for Constructing Decision Forests [J].Trans. on Pattern Analysis and Machine Intelligence, 1998,20 (8). 被引量:1
  • 6Amit Y, Gernan D. Shape Quantization and Recognition with Randomized Trees[J]. Neural Computation, 1997,9(7). Breiman L Random Forest[J]. Machine Learning, 2001,45(1). 被引量:1
  • 7Breiman L. Random Forests[J]. Machine Learning, 2001,45(1). 被引量:1
  • 8Tibshirani tL Bias, Variance, and Prediction Error for Classification Rules[C]. Technical Report, Statistics Department, University of Toronto, 1996. 被引量:1
  • 9Wolpert D H, Macready W G. An Efficient Method to Estimate Bagging's Generalization Error[J]. Machine Learning, 1999,35(1). 被引量:1
  • 10Breiman L. Out-of-bag Estimation[EB/OL]. [2010- 06- 30]. http//stat, berkeley, edu/ pub/ users/ breiman / OOB estimation, ps. 被引量:1

共引文献997

同被引文献49

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部