期刊文献+

α-MnO_2纳米管自组装微球的可控制备及电化学性能 被引量:2

Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO_2 Nanotubes
下载PDF
导出
摘要 以KMnO_4、HCl为反应物,H_2SO_4、NH_4Cl为助剂,利用水热法成功合成了α-MnO_2纳米管自组装微球。并采用X射线晶体衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及X射线光电子能谱(XPS)表征手段对产物进行了形貌和结构表征,发现H^+与Cl-离子浓度对产物的晶型有很大影响:单一增加H+或Cl-离子浓度可以使纳米管管径减小、长度增加;同时增加两种离子浓度则产物从α相转化为β相;NH4+可以起到维持产物晶型(α相)以及管状形貌的作用。电化学性能测试表明,具有独特形态的α-MnO_2纳米管微球作为锂电负极具有高容量(20 m A·g-1电流密度下首周放电比容量达1783.5 m Ah·g-1)与良好的倍率性能,是具有广阔应用前景的锂离子电池材料。 Self-assembled microspheres of a-MnO2 nanotubes were successfully synthesized by hydrothermal method using KMnO4 and HCI as reactants, and H2SO4 and NH4Cl as auxiliaries. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure and morphology of the products. The H+ and Cl- ion concentrations substantially influence the crystal form of the product. Increasing either H+ or CI- ion concentration decreases the diameter of nanotubes but increases their length. In contrast, increasing both H+ and Cl- ion concentrations, changes the product from a phase to β phase. Moreover, NH4+ ion plays the key role of maintaining the product crystal and its tubular morphology The electrochemical performance results showed that the microspheres of α-MnO2 nanotubes with a unique morphology have a high first cycle discharge capacity of 1783.5 mAh.g-1 at the current density of 20 mA.g-1, along with a good rate performance. This suggests that the self-assembled microspheres were a promising material for lithium-ion batteries.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2017年第7期1421-1428,共8页 Acta Physico-Chimica Sinica
基金 国家重点研发计划(2016YFB0901502) 国家自然科学基金(21231005 51371100)资助项目~~
关键词 α-MnO2纳米管 可控制备 自组装微球 水热合成法 锂离子电池 α-Mn02 nanotubes Controllable preparation Self-assembled microspheres Hydrothermal synthesis Lithium-ion battery
  • 相关文献

参考文献3

二级参考文献38

  • 1E1-Kady, M. F. Strong, V. Dubin, S. Kaner, R. B. Science 2012, 335, 1326. doi: 10.1126/science.1216744. 被引量:1
  • 2Simon, P. Gogotsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/ nmat2297. 被引量:1
  • 3Wen, C. M. Wen, Z. Y. You, Z. Wang, X. F. Chin. J. Chem. Phys. 2012, 25, 209. doi: 10.1088/1674-0068/25/02/209-213. 被引量:1
  • 4Wang, X, F. You, Z. Ruan, D. B. Chin. J, Chem. Phys, 2005, 18, 635. 被引量:1
  • 5Kim, I. H. Kim, K. B. J. Electrochem. Soc. 2006, 153, A383. 被引量:1
  • 6Nagarajan, N. Cheong, M. Zhitomirsky, I. Mater. Chem. Phys. 2007, 103 (1), 47. doi: 10.1016/j.matchemphys.2007.01.005. 被引量:1
  • 7Fischer, A. E. Pettigrew, K. A. Rolison, D. R. Stroud, R. M. Long, J. W. Nano Lett. 2007, 7 (2), 281. 被引量:1
  • 8Sharma, R. K. Oh, H. S. Shul, Y. G. Kim, H. J. Power Sources 2007, 173, 1024. doi: 10.1016/j.jpowsour.2007.08.076. 被引量:1
  • 9Huang, H. J. Wang, X. Nanoscale 2011, 3, 3185. doi: 10.1039/ clnr10229j. 被引量:1
  • 10Wang, H. L. Casalongue, H. S. Liang, Y. Y. Dai, H. J. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/ja102267j. 被引量:1

共引文献75

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部