期刊文献+

Vortex shedding in the flow around two side-by-side circular cylinders of different diameters 被引量:2

Vortex shedding in the flow around two side-by-side circular cylinders of different diameters
原文传递
导出
摘要 In this paper,the 3-D turbulent flow around two side-by-side circular cylinders of different diameters,at sub-critical Reynolds number(Re=3 900),is numerically simulated by the large eddy simulation(LES).The spacing ratios(T/D)between the two cylinders are considered in four cases(T/D=1.2,1.5,1.8 and 2.7)to study the vortex shedding and turbulent properties in the flow field.The main results are focused on the drag and lift coefficients,the vortex shedding frequency,the coherent structure,and the scale properties.It is shown that when T/D is equal to 1.2,the vortex shedding of the main cylinder is strongly suppressed by the small cylinder,the drag and lift coefficients of the main cylinder are smaller than those in other three cases.While T/D is equal to 1.5,the vortex shedding of the main cylinder can be improved,the drag and lift coefficients of the main cylinder are larger than those in other three cases.The empirical mode decomposition(EMD)method is applied to decompose the velocity signals traced by the LES.It is shown that there is a linear relationship between the mean period and the mode in the semi-log coordinates.The vortex shedding period of the main cylinder is consistent with the period of the restructured coherent structures quantitatively. In this paper,the 3-D turbulent flow around two side-by-side circular cylinders of different diameters,at sub-critical Reynolds number(Re=3 900),is numerically simulated by the large eddy simulation(LES).The spacing ratios(T/D)between the two cylinders are considered in four cases(T/D=1.2,1.5,1.8 and 2.7)to study the vortex shedding and turbulent properties in the flow field.The main results are focused on the drag and lift coefficients,the vortex shedding frequency,the coherent structure,and the scale properties.It is shown that when T/D is equal to 1.2,the vortex shedding of the main cylinder is strongly suppressed by the small cylinder,the drag and lift coefficients of the main cylinder are smaller than those in other three cases.While T/D is equal to 1.5,the vortex shedding of the main cylinder can be improved,the drag and lift coefficients of the main cylinder are larger than those in other three cases.The empirical mode decomposition(EMD)method is applied to decompose the velocity signals traced by the LES.It is shown that there is a linear relationship between the mean period and the mode in the semi-log coordinates.The vortex shedding period of the main cylinder is consistent with the period of the restructured coherent structures quantitatively.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第3期470-478,共9页 水动力学研究与进展B辑(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11572203,11332006) the Innovation Program of Shanghai Municipal Education Commission(Grant No.13YZ124)
关键词 Large eddy simulation(LES) drag and lift coefficients vortex shedding frequency empirical mode decomposition(EMD) Large eddy simulation(LES) drag and lift coefficients vortex shedding frequency empirical mode decomposition(EMD)
  • 相关文献

参考文献4

二级参考文献48

共引文献13

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部