期刊文献+

基于扰动因子的准则函数下的聚类算法 被引量:4

Clustering algorithm under the criterion function based on the disturbance factors
下载PDF
导出
摘要 针对初始聚类中心的选择对于K-均值算法的聚类结果非常敏感,且容易陷入局部极值的缺点,提出利用蚁群聚类算法来搜寻K-均值的初始聚类中心,同时通过在搜索空间增加一组逐渐递减的服从均匀分布的扰动因子,建立基于扰动因子的准则函数下的聚类算法.最后对蚁群聚类算法、K-均值聚类算法以及改进后的算法做了对比实验.实验结果表明,改进后算法的聚类能力更强. As to the clustering results of K-Means algorithm is very sensitive to selecting an initial cluster centers,and easy to fall into local extreme,it is put forward that K-means' initial clustering center is searched by ant colony clustering algorithm which has a strong ability to deal with local extremum.At the same time,clustering algorithm under the criterion function based on the disturbance factors is established by adding a set of gradually decreasing uniform distribution factors in search space.Finally,the contrast tests are made among the ant colony algorithm,the K-mean algorithm and the improved algorithm.The results show that the improved algorithm's clustering ability is stronger than the other two.
出处 《纺织高校基础科学学报》 CAS 2017年第1期81-86,共6页 Basic Sciences Journal of Textile Universities
基金 陕西省自然科学基金资助项目(2015JM1012)
关键词 K-均值聚类算法 聚类中心 扰动因子 蚁群聚类算法 K-means algorithm clustering center disturbance factor ant colony clustering algorithm
  • 相关文献

参考文献12

二级参考文献123

共引文献148

同被引文献63

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部