期刊文献+

Numerical Analysis of Temperature Distributions in Single Cell of Polymer Electrolyte Fuel Cell when Operated in Elevated Temperature Range 被引量:4

Numerical Analysis of Temperature Distributions in Single Cell of Polymer Electrolyte Fuel Cell when Operated in Elevated Temperature Range
下载PDF
导出
摘要 Abstract: The purpose of this study is to analyze the temperature distribution on the interface between the polymer electrolyte membrane and catalyst layer at the cathode in single cell of polymer electrolyte fuel cell when operated in elevated temperature range than usual. In this study, the interface between the polymer electrolyte membrane and catalyst layer at the cathode is named as reaction surface. This study has considered the 1D multi-plate heat transfer model estimating the temperature distribution on the reaction surface and verified with the 3D numerical simulation model solving many governing equations on the coupling phenomena of the polymer electrolyte fuel cell. The 3D numerical simulation model coverers a half size of actual cell including three straight parts and two turn-back corners, which can display the essential phenomena of single cell. The results from both models/simulations agreed well. The effects of initial operation temperature, flow rate, and relative humidity of supply gas on temperature distribution on the reaction surface have been investigated. Though the effect of flow rate of supply gas on temperature distribution on reaction surface has been small, low relative humidity of supply gas has caused higher temperature on the reaction surface compared to high relative humidity of the supply gas. The temperature rise of reaction surface from initial operation temperature has increased with the increasing in initial operation temperature of cell.
出处 《Journal of Energy and Power Engineering》 2017年第6期393-408,共16页 能源与动力工程(美国大卫英文)
  • 相关文献

同被引文献4

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部