期刊文献+

基于多模态深度学习的RGB-D物体识别 被引量:6

RGB-D object recognition based on multimodal deep learning
下载PDF
导出
摘要 针对现有RGB-D物体识别方法存在图像特征学习不全面、类间相似的物体识别精度不高等问题,联合稀疏自编码(sparse auto-encoder,SAE)及递归神经网络(recursive neural networks,RNNs)提出多模态稀疏自编码递归神经网络(multi-modal sparse auto-encoder and recursive neural networks,MSAE-RNNs)的深度学习模型。SAE结合卷积及池化技术分别从RGB-D图像的RGB图、灰度图、深度图、3D曲面法线中提取低层次的平移不变性特征,作为多个固定树RNNs的输入,得到更加抽象的高层特征,融合后的多模态特征,采用SVM分类器进行分类。在RGB-D数据集上的实验结果表明,该算法的物体识别率达到90.7%,较其它算法提高了3%-9%,能很好完成RGB-D物体的识别。 For the problems such as insufficient feature learning and lower accuracy of inter-class similar object recognition in current RGB-D object recognition methods,a deep learning model called multimodal sparse auto-encoder and recursive neural networks(MSAE-RNNs),which based on a combination of the sparse auto-encoder(SAE)and recursive neural networks(RNNs)for learning features was proposed.The SAE integrating convolution and pooling technology were used to extract low-level transnationally invariant features which were then taken as inputs to multiple and fixed-tree RNNs to compose higher order features.The multi-modal feature representations learnt from RGB images,gray images,depth images and 3Dsurface normal maps were sent to a SVM classifier for classification.Experimental results on RGB-D dataset demonstrate that the recognition accuracy of the proposed method for RGB-D objects can reach 90.7%.Moreover,compared with other methods,the proposed method improves the recognition rate by 3%-9%,and completes the RGB-D object recognition commendably.
出处 《计算机工程与设计》 北大核心 2017年第6期1624-1629,共6页 Computer Engineering and Design
基金 国家自然科学基金面上基金项目(41571396) 国家创新训练基金项目(201410488017) 省级大学生创新创业训练计划基金项目(201410488038) 校级大学生科技创新基金项目(14ZRA079 14ZRC093)
关键词 多模态 稀疏自编码 递归神经网络 卷积及池化 3D曲面法线 multimodal sparse auto-encoder recursive neural networks convolution and pooling 3Dsurface normal
  • 相关文献

参考文献3

二级参考文献28

  • 1田海山,何援军,蔡鸿明.基于点的计算机图形学综述[J].系统仿真学报,2006,18(z1):42-45. 被引量:12
  • 2程志全,党岗,徐凯,李宝,王彦臻,金士尧.空表面的重建技术综述[J].系统仿真学报,2009,21(S1):24-27. 被引量:2
  • 3XIE F, ZHAO J, JU F.The point cloud collection of the incisor teeth of beaver and re-construction of its curved surface [J]. Advanced Materials Research, 2012, 426:387-390. 被引量:1
  • 4DEFISHER S, BECHTOLD M, MOHRING D. A non-contact surface measurement system for freeform and conformal optics [C]. SPIE Defense, Security, and Sensing, 2011, 8016:80160W-1-80160W-6. 被引量:1
  • 5MIAN S H, MANNAN M, AL-AHMARI A. Accuracy of a reverse-engineered mould using contact and non-contact measurement techniques [J]. International Journal of Computer Integrated Manufacturing, 2015,28(5):419-436. 被引量:1
  • 6MAGLO A, COURBET C, ALLIEZ P, et al.. Progressive compression of manifold polygon meshes[J]. Computers & Graphics, 2012, 36(5):349-359. 被引量:1
  • 7MARTIN R, STROUD I, MARSHALL A. Data reduction for reverse engineering[J]. RECCAD. Deliverable document 1 COPERUNICUS project. No. 1068. Computer and Automation Institute of Hungarian Academy of Science. January, 1996. 被引量:1
  • 8LEE K, WOO H, SUK T. Point data reduction using 3D grids[J]. The International Journal of Advanced Manufacturing Technology, 2001, 18(3):201-210. 被引量:1
  • 9ALEXA M, BEHR J, COHEN-OR D, et al.. Computing and rendering point set surfaces[J]. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(1):3-15. 被引量:1
  • 10SONG H, FENG H Y. A progressive point cloud simplification algorithm with preserved sharp edge data[J]. The International Journal of Advanced Manufacturing Technology, 2009, 45(5-6):583-592. 被引量:1

共引文献116

同被引文献21

引证文献6

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部