期刊文献+

Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples 被引量:27

Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples
原文传递
导出
摘要 Based on the main driving force of plate motion(the slab pull force generated by the descent of the oceanic plate in subduction zones) and the three primary mechanisms for magma generation(adding fluid, increasing temperature, and decreasing pressure), the continent-continent collisional process has been divided into three stages, including initial collision, ongoing collision, and tectonic transition. These stages are characterized by normal calc-alkaline andesitic magma(dehydration of the oceanic crust to release fluids), the migration of calc-alkaline magma toward the trench(dehydration of the oceanic crust or an increase in temperature) or small-scale crust-derived peraluminous magma(heat from intra-crustal shearing), and extensive magmatism with compositional diversity induced by slab break-off(increasing temperature and decreasing pressure), respectively.On the basis of the obtained age of slab break-off, the timing of the initial continent-continent collision can be quantitatively back-dated using the convergence rate, depth of slab break-off, and subduction angle. The spatio-temporal migration of the magmatic activity of the Gangdese Batholith, the onset of magmatic flare-up, and the increase of magma temperature at 52–51Ma documented by the volcanic rocks of the Linzizong Pana Formation were most likely the result of the break-off of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere at approximately 53 Ma. This proposed age of slab break-off suggests that the initial India-Asia collision likely occurred at approximately 55–54 Ma, which is consistent with the collision ages constrained by other abundant geological data(60–55 Ma). This magmatic method has been applied to the Bitlis orogenic belt in southern Turkey in the Arabia-Eurasia continental collision zone, yielding an age range of approximately 29–22 Ma for the initial Arabia-Asia continental collision that is close to the collision ages recently obtained by apatite fission-track dating(approximately20 Ma) and regional tectonic shortening(a Based on the main driving force of plate motion(the slab pull force generated by the descent of the oceanic plate in subduction zones) and the three primary mechanisms for magma generation(adding fluid, increasing temperature, and decreasing pressure), the continent-continent collisional process has been divided into three stages, including initial collision, ongoing collision, and tectonic transition. These stages are characterized by normal calc-alkaline andesitic magma(dehydration of the oceanic crust to release fluids), the migration of calc-alkaline magma toward the trench(dehydration of the oceanic crust or an increase in temperature) or small-scale crust-derived peraluminous magma(heat from intra-crustal shearing), and extensive magmatism with compositional diversity induced by slab break-off(increasing temperature and decreasing pressure), respectively.On the basis of the obtained age of slab break-off, the timing of the initial continent-continent collision can be quantitatively back-dated using the convergence rate, depth of slab break-off, and subduction angle. The spatio-temporal migration of the magmatic activity of the Gangdese Batholith, the onset of magmatic flare-up, and the increase of magma temperature at 52–51Ma documented by the volcanic rocks of the Linzizong Pana Formation were most likely the result of the break-off of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere at approximately 53 Ma. This proposed age of slab break-off suggests that the initial India-Asia collision likely occurred at approximately 55–54 Ma, which is consistent with the collision ages constrained by other abundant geological data(60–55 Ma). This magmatic method has been applied to the Bitlis orogenic belt in southern Turkey in the Arabia-Eurasia continental collision zone, yielding an age range of approximately 29–22 Ma for the initial Arabia-Asia continental collision that is close to the collision ages recently obtained by apatite fission-track dating(approximately20 Ma) an
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第6期1040-1056,共17页 中国科学(地球科学英文版)
基金 supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB03010301) the National Key Research and Development Project of China (Grant No. 2016YFC0600304) the National Natural Science Foundation of China (Grant No. 41225006)
关键词 Magmatic record Slab break-off Timing of initial collision India-Asia collision Tethyan orogenic belt 陆-陆碰撞 碱性岩浆 大陆碰撞带 大洋岩石圈 林子宗火山岩 大陆下地壳 印度大陆 大洋板块
  • 相关文献

参考文献8

二级参考文献147

共引文献446

同被引文献520

引证文献27

二级引证文献309

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部