摘要
It has been found that a model of extended electrons is more suited to describe theoretical simula- tions and experimental results obtained via scanning tunnelling microscopes, but while the dynamic properties are easily incorporated, magnetic properties, and in particular electron spin properties pose a problem due to their conceived isotropy in the absence of measurement. The spin of an electron reacts with a magnetic field and thus has the properties of a vector. However, electron spin is also isotropic, suggesting that it does not have the properties of a vector. This central conflict in the de- scription of an electron's spin, we believe, is the root of many of the paradoxical properties measured and postulated for quantum spin particles. Exploiting a model in which the electron spin is described consistently in real three-dimensional space - an extended electron model - we demonstrate that spin may be described by a vector and still maintain its isotropy. In this framework, we re-evaluate the Stern-Gerlach experiments, the Einstein-Podolsky-Rosen experiments, and the effect of consecutive ts and find in all cases a fairly intuitive explanation.
It has been found that a model of extended electrons is more suited to describe theoretical simula- tions and experimental results obtained via scanning tunnelling microscopes, but while the dynamic properties are easily incorporated, magnetic properties, and in particular electron spin properties pose a problem due to their conceived isotropy in the absence of measurement. The spin of an electron reacts with a magnetic field and thus has the properties of a vector. However, electron spin is also isotropic, suggesting that it does not have the properties of a vector. This central conflict in the de- scription of an electron's spin, we believe, is the root of many of the paradoxical properties measured and postulated for quantum spin particles. Exploiting a model in which the electron spin is described consistently in real three-dimensional space - an extended electron model - we demonstrate that spin may be described by a vector and still maintain its isotropy. In this framework, we re-evaluate the Stern-Gerlach experiments, the Einstein-Podolsky-Rosen experiments, and the effect of consecutive ts and find in all cases a fairly intuitive explanation.