期刊文献+

基于稀疏表达和暗通道的图像去雾霾算法 被引量:4

Image dehaze algorithm based on sparse representation and dark channel
下载PDF
导出
摘要 目前,雾霾所引起的图像模糊问题,主流的算法主要都侧重于处理雾气,对于霾没有相关的处理.针对此缺陷,提出了一种联合K-SVD(K-singular value decomposition)稀疏算法和暗通道先验算法的全新算法,来克服雾霾引起的图像模糊问题.图像的处理主要分两个步骤:第一步是运用KSVD稀疏算法去除图像中的霾恢复出只含雾气的图像,第二步通过经典的暗通道算法去除图像上的层层雾气.计算机仿真结果表明,该方法对于图像的处理结果要优于FVR(Fast visiblity restoration)算法,暗通道先验算法和直方图均衡化算法. At present, to solve the problem of image blur caused by haze, most algorithms focus on eliminating blur caused by mist but ignore the blur caused by suspended particles. Aiming at solving the problem mentioned above, a novel algorithm based on K-SVD sparse algorithm and the dark channel priori algorithm is proposed. The algorithm can be divided into two steps: first, K-SVD sparse algorithm is employed to remove the dust particles in the image, obtaining a recovered, fog-only image. Second, the fog in the image is removed by means of the classic dark channel algorithm. The simulation results illustrate that the proposed algorithm is better than FVR algorithm, dark channel priori algorithm and histogram equalization algorithm, which proves the superiority of this method.
出处 《浙江工业大学学报》 CAS 北大核心 2017年第3期315-319,共5页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(U1509219 61471322 61402416)
关键词 K-SVD稀疏算法 暗通道先验算法 去雾霾 K-SVD sparse algorithm dark channel prior algorithm dehaze
  • 相关文献

参考文献9

二级参考文献22

  • 1高峰.二维数字图象处理中的非线性滤波技术[J].光子学报,1995,24(1):48-56. 被引量:4
  • 2刘宝生,闫莉萍,周东华.几种经典相似性度量的比较研究[J].计算机应用研究,2006,23(11):1-3. 被引量:44
  • 3Delp E J ,Mitchell O R. Image compression using block truncation coding[J]. IEEE Transactions on Communications, 1979,27(9): 1335-- 1342. 被引量:1
  • 4Linde Y, Buzo A , Gray R M. An algorithm for vector quantizer design[J]. IEEE Transactions on Communications, 1980,28(1):84--95. 被引量:1
  • 5Clarke R J . Transform coding of images[J]. Academic Press London,1985. 被引量:1
  • 6Lema M D, Mitchell O R. Absolute moment block truncation coding and its application to color images[J]. IEEE Transactions on Communications, 1984,32(10) : 1148-- 1157. 被引量:1
  • 7Arce G, Gallagher N C Jr. BTC image coding using median filter roots[J]. IEEE Transactions on Communications, 1983,31(6):784--793. 被引量:1
  • 8Udpikar V R, Raina J P. BTC image coding using vector quantization[J]. IEEE Transactions on Communications, 1987,35(3):352--356. 被引量:1
  • 9Oshri E, Shelly N, Mitchell H B. Interpolative three-level block truncation coding algorithm[J]. Electronics Letters,1993,29(14) : 1267-- 1288. 被引量:1
  • 10Ramana Y V, Eswaran H. A new algorithm for BTC image bit plane coding[J]. IEEE Transactions on Communications,1995,43(6): 2010--2011. 被引量:1

共引文献9

同被引文献18

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部