期刊文献+

基于近似熵快速算法的静息态脑磁信号分析

Resting-state magnetic signals analysis based on the fast algorithm of approximate entropy
下载PDF
导出
摘要 为了探究静息态精神分裂症患者脑磁信号的非线性动力学特性,提出了一种将小波变换和近似熵相结合的特征提取方法.该方法首先通过小波变换,将10个正常人和10个精神分裂症患者的脑磁信号进行6层小波分解,提取对应于脑磁信号θ波段和α波段的小波系数,继而计算和比较两类人近似熵的分布情况.实验结果表明,相同情况下精神分裂症患者MEG信号的各脑区和各通道间的近似熵都普遍高于正常人,α波段的额叶和中央区域尤为突出.该结果为进一步研究患者MEG信号特征进而建立相应的分类诊断模型提供了思路. In order to study the nonlinear dynamics of the schizophrenic patient's MEG signals in resting-state, this paper presents a method of feature extraction which combined the wavelet variation with the approximate entropy. The brain magnetic signals of 10 controls and 10 patients are decomposed to six levels by wavelet decomposition and wavelet coefficient is extracted corresponding to the 0 rhythm and a rhythm of MEG signals. Then the distribution of approximate entropy between two kinds of people are calculated and compared. The experiment results show that the entropy of each brain region and channel of the MEG signals in schizophrenic patients were generally higher than controls under the same situation, especially frontal and central regions in rhythm. This result provides a guideline for the study of EEG signal characteristics of the patients and establishes the appropriate classification diagnostic model.
作者 黄晓霞 王盼盼 HUANG Xiaoxia WANG Panpan(Shanghai Maritime University, College of Information Engineering, Shanghai 200135)
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2017年第3期309-316,共8页 Journal of Central China Normal University:Natural Sciences
基金 第48批教育部留学回国人员科研启动基金项目
关键词 脑磁信号 小波变换 近似熵 精神分裂症 magnetoencephalography wavelet transform approximate entropy schizophrenia
  • 相关文献

参考文献5

二级参考文献46

  • 1张毅,杨柳,李敏,罗元.基于AR和SVM的运动想象脑电信号识别[J].华中科技大学学报(自然科学版),2011,39(S2):103-106. 被引量:7
  • 2张文渊.临床神经电生理学术语(12)[J].临床神经电生理学杂志,2006,15(4):198-198. 被引量:1
  • 3张文渊.临床神经电生理学术语(17)[J].临床神经电生理学杂志,2007,16(3):134-134. 被引量:1
  • 4徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报(自然科学版),2007,37(4):629-633. 被引量:10
  • 5DAVIES M E, JAMES C J. Source separation using single channel ICA[J]. Signal Process, 2005, 87(8): 1 819- 1 832. 被引量:1
  • 6LIN Jin, ZHANG Aimin. Fault feature separation using wavelet-ICA filter[J]. NDT & E International, 2005, 38(6): 421-427. 被引量:1
  • 7SHAH V P, YOUNAN N H, DURBHA S S, et al. Feature identification via a combined ICA-Wavelet method for image information mining[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1): 18-22. 被引量:1
  • 8ECHEVERRIA J C. Application of empirical mode decomposition to heart rate variability analysis[J]. Medical & Biological Engineering & Computing, 2001, 39: 471-479. 被引量:1
  • 9GAO Bin, WOO W L, DLAY S S. Single-channel source separation using EMD-Subband variable regularized sparse features[J]. IEEE Transactions on Audio Speech and Language Processing, 2011, 19(4): 961-976. 被引量:1
  • 10HYYARINEN A, OJA E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13: 411-430. 被引量:1

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部