期刊文献+

基于压缩感知的大规模MIMO分段信道反馈 被引量:2

Segmental Channel Feedback for Massive MIMO with Compressive Sensing
下载PDF
导出
摘要 大规模多入多出技术(Multiple-Input Multiple-Output,MIMO)是未来5G无线通信的关键技术。在MIMO系统中,发送端的空时编码、接收端的信号检测都需要信道状态信息(Channel State Information,CSI),而大规模MIMO的信道反馈问题随着MIMO信道矩阵的尺寸越来越大,变得越来越具有挑战性。为此,在研究大规模MIMO系统中信道脉冲响应(Channel Impulse Response,CIR)反馈的基础上,提出了一种基于压缩感知的分段CIR反馈方案。应用该方案分段后的信道有着比原信道更好的稀疏性,基站可以利用压缩感知恢复分段后的经过高度压缩的CIR。仿真结果表明,所提出的方案可大幅度降低反馈误差,当压缩率为20%时,直接压缩方案已经失效,而所提出的方案表现却良好;当压缩率为50%时,所提出的方案能够获得高于直接压缩方案5 dB的SNR增益。 Massive Multiple-input Multiple-Output (MIMO) is becoming a key technology for future 5G wireless communications. In MIMO systems ,Channel State Information (CSI) is essential for both space-time coding at transmitters and signal detection at receivers. Channel feedback for massive MIMO is challenging due to the substantially increased dimension of MIMO channel matrix. For this rea- son, on the basis of the study of Channel Impulse Response (CIR) feedback for massive MIMO systems, a segmented CIRs fee.Aback scheme based on compressive sensing has been proposed. Specifically, segmented channels are sparser than the original channel. Thus, the base station can recover the highly compressed segmented CIRs under the framework of compressive sensing. Simulation results show that the proposed scheme can reduce the feedback error compared with the direct CS-based scheme and that when compression ratio is 20%, the direct CS-based scheme falls to work since the feedback while the proposed scheme performs well;when compression ratio is 50%, the proposed scheme achieves a 5 dB SNR gain compared with the direct CS-based scheme.
作者 张梦莹 陈璇
出处 《计算机技术与发展》 2017年第6期183-186,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61271335) 江苏省高校重点项目(14KJA510003)
关键词 大规模MIMO CIR反馈 压缩感知 分段CIR massive MIMO CIR feedback compressive sensing segmental CIRs
  • 相关文献

参考文献7

二级参考文献186

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2TONG Lang,SADLER B M,DONG Min.Pilot-assisted wireless transmissions[J].IEEE Signal Processing Magzine,2004,2(6):12-25. 被引量:1
  • 3VAN DE BEEK J J,EDFORS O.On channel estimation in OFDM systems[C]//Proc of IEEE VTC 1995.Piscataway:IEEE,1995,2:815-819. 被引量:1
  • 4WU C J,LIN D W.Sparse channel estimation for OFDM transmission based on representative subspace fitting[C]//Proc of IEEE 61st Veh Technol Conf.Piscataway:IEEE,2005,1:495-499. 被引量:1
  • 5PAREDES J L,ARCE G R,WANG Zhongmin.Ultra-Wideband compressed sensing:channel estimation[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(3):383-395. 被引量:1
  • 6TAUBOCK G,HLAWATSCH F.A compressed sensing technique for ofdm channel estimation in mobile environments:exploiting channel sparsity for reducing pilots[C]//Proceedings of ICASSP'2008.Piscataway:IEEE,2008:2885-2888. 被引量:1
  • 7DONOHO D L.Compreesed sensing[J].IEEE Trans on Inf Theory,2006,52(4):1289-1306. 被引量:1
  • 8BARANIUK R G.Compressive sensing[J].IEEE signal Processing Magazine,2007,24(4):118-120,124. 被引量:1
  • 9MALLAT S,ZHANG Z.Mathcing pursuit with time-frequency dictionaries[J].IEEE Tram on Signal Processing,1993,41(12):3393-3415. 被引量:1
  • 10TROPP J A,GILBERTA C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans on lnformation Theory,2007,53(12):4655-4666. 被引量:1

共引文献993

同被引文献5

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部