期刊文献+

梯形模糊数的有序表示及中心平均排序方法 被引量:3

Ordered Expression of Trapezoidal Fuzzy Number and the Center Average Ranking Method
下载PDF
导出
摘要 模糊数的排序在决策分析和优化问题中占有十分重要的地位,而一般模糊数均可近似分解为若干分片小梯形的叠加形式,故梯形模糊数的排序问题至关重要!本文首先引入等距分片方法对梯形模糊数实施纵向分割,进而获得梯形模糊数的有序表示。其次,依中心平均加权准则改进梯形模糊数的横向和纵向中心坐标公式,并提出新的指标排序准则。最后,通过实例分析考证了新的排序方法的有效性。 The ranking of fuzzy numbers occupies a very important position in the problems of decision analysis and optimization, and a fuzzy number can be approximately decomposed into several small shard trapezoidal form of superposition. Therefore, the ranking problem of trapezoidal fuzzy number is very important. In this paper, a trapezoidal fuzzy number can be implemented in a vertical lengthways segmentation along the axis-y through intro- ducing the method of equidistant subdivision, and an ordered expression of the trapezoidal fuzzy number may be obtained. Secondly, according to the center weighted average rule the horizontal and vertical center formula of a trapezoidal fuzzy number is improved, and a new index ranking criterion is put forward. Finally, we verify the effectiveness of the new ranking method through an example analysis.
作者 王钦 李贵春
出处 《运筹与管理》 CSSCI CSCD 北大核心 2017年第5期130-136,共7页 Operations Research and Management Science
基金 天津市哲学社会科学基金重点项目(TJGL15-006) 国家自然科学基金项目(61374009)
关键词 梯形模糊数 等距分片 有序表示 中心坐标 指标排序准则 trapezoidal fuzzy number equidistant subdivision ordered expression center coordinates indexranking criterion
  • 相关文献

参考文献6

二级参考文献51

  • 1Chang D Y. Applications of the extent analysis method on fuzzy AHP[ J]. European Journal of Operational Research, 1996, 95 : 649-655. 被引量:1
  • 2Kwiesielewicz M. A note on the fuzzy extension of Saaty's priority theory[J]. Fuzzy Sets and Systems, 1988, (2) : 161-172. 被引量:1
  • 3Leung L C, Cao D. On consistency and ranking of alternatives in fuzzy AHP[ J]. European Journal of Operational Research, 2000, 124: 102-113. 被引量:1
  • 4Van Laarhoven P J M, Pedryez W. A fuzzy extension of satty' s priority theory[ J]. Fuzzy Sets and Systems, 1983, 11 : 229-241. 被引量:1
  • 5Herrera-viedma E, Herrera F, Chiclana F, et al. Some issues on consistency of fuzzy preference relations [ J]. European Journal of Operational Research, 2004, 154 : 98-109. 被引量:1
  • 6Wang Y M, Celik Parkan. Multiple attribute decision making based on fuzzy preference information on ahernatives: Ranking and weighting[ J]. Fuzzy Sets and Systems, 2005, 153: 331-346. 被引量:1
  • 7S.Chanas.On the Interval Approximation of a Fuzzy Number[J]. Fuzzy Sets and Systems,2001,122(2). 被引量:1
  • 8P.Grzegorzewski.Nearest Interval Approximation of a Fuzzy Number[J].Fuzzy Sets and Systems,2002,130(3). 被引量:1
  • 9M.Ma.,et al.Correction to a New Approach for Defuziification[J]. Fuzzy Sets and Systems,2002,128(1). 被引量:1
  • 10M.Ma.,et al.A New Approximation for Defuzzification [J].Fuzzy Sets and Systems,2000,111(3). 被引量:1

共引文献61

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部