期刊文献+

红外光谱差减技术扣除水汽吸收干扰的局限性 被引量:3

Limitations of Spectral Subtraction in the Elimination of Infrared Water Vapor Bands
下载PDF
导出
摘要 红外光谱差减技术在扣除背景组份干扰方面得到广泛应用,但其扣除空气中水汽效果却不尽如人意。研究了不同湿度的水汽光谱与光谱差减效果的关系,以探究光谱差减技术在水汽扣除领域局限性的原因。结果表明:(1)相对湿度改变,水汽的红外光谱也发生变化,不管如何小心地选择比例系数f,从相对湿度x%的水汽光谱Ax%,也不能完全扣除相对湿度为y%的水汽光谱Ay%,即fAx%≠Ay%。(2)相对湿度改变,水分子团簇(H_2O)n的相对组成也会发生变化,这是导致光谱差减技术局限性的主要原因。(3)将湿度为x%和y%的两水汽光谱Ax%和Ay%进行线性组合,则可以高度近似地模拟出介于两者之间的湿度的水汽光谱。比如用40%水汽谱和30%水汽谱,可以模拟得到32%或35%或37%的水汽谱。实验结果表明这是扣除水汽干扰效果更好的路径。(4)论证了水汽补偿湿度滴定法具有高效性的原因。 Spectral subtraction is a powerful and conventional tool for the elimination of background interferences, but this technique has been suffered from severe limitations in the case of atmospheric water vapor. In order to understand the real reasons of the problems above , IR spectra of water vapor at different humidity have been investigated. The following conclusions have been reached: (1) The spectral features of water vapor will change as the relative humidity of air changes. Namely, if the spectrum of atmospheric air with x% relative humidity is given, we cannot predict and obtain the spectrum of air with y% humidity regardless of how carefully the scaling factor has been chosen. In general, spectral subtraction is not a good practice to remove water vapor interferences. (2) The relative composition of water clusters (H2O)n changes with the relative humidity, and this is the main reason of spectral subtraction limitation. (3) The spectrum of water vapor between relative humidity x% and y% can be matched near perfectly by a combination of x% spectrum and y% spectrum. This provides a new and effective way for the elimination of water vapor interferences. (4) The high efficiency of the humidity titration method has been demonstrated experimentally.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第6期1673-1677,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(21473009 20873136)资助
关键词 水汽干扰 红外光谱 差减技术 局限性 空气湿度 Water vapor interference Infrared spectrum Spectral subtraction Limitation;Air humidity
  • 相关文献

参考文献3

二级参考文献39

  • 1Lin, S. S. Rev. Sci. Instrum. 1973, 44, 516. 被引量:1
  • 2Yang, X. L.; Castleman, A. W. Jr. J. Am. Chem. Soc. 1989, 111, 6845. 被引量:1
  • 3Nagashima, U.; Shinohara, H.; Nishi, N.; Tanaka, H. J. Chem. Phys. 1986, 84, 209. 被引量:1
  • 4Wales, D. J.; Hodges, M. P. Chem. Phys. Lett. 1998, 286, 65. 被引量:1
  • 5McDonald, S.; Ojamae, L.; Sherwin, J.; Singer, S. J. Phys. Chem. 1998, 102, 2824. 被引量:1
  • 6Fanourgakis, G. S.; Apra, E.; Xantheas, S. S. J. Chem. Phys.2004,297,271. 被引量:1
  • 7Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N. Science 2004, 304, 1134. 被引量:1
  • 8Wei, S.; Shi, Z.; Castleman, A. W. Jr.J. Chem. Phys. 1991, 94, 3268. 被引量:1
  • 9Khan, A. Chem. Phys. Lett. 2000, 319, 440. 被引量:1
  • 10Kirov, M. V.; Fanourgakis, G. S.; Xantheas, S. S. Chem. Phys. Lett. 2008, 461, 180. 被引量:1

共引文献8

同被引文献44

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部